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ABSTRACT

Some topics related to dynamic testing of strap-

down sensors are analyzed, with emphasis on measuring

parameters which give rise to motion-induced error torques

in single-degree-of-freedom inertial sensors. The objec-

tive is to determine the dynamic inputs, test equipment

characteristics and data processing procedures best suited

for measuring these parameters. Single-axis, low fre-

quency vibration tests and constant rate tests are studied

in detail. Methods for analyzing the effects of test motion

errors and measurement errors are developed and illus-

trated by examples. They are shown to be useful in pre-

dicting achievable test accuracies and required test times.

Candidate test data processing methods are compared and

recommendations concerning test equipment and data proc-

essing are made.

Preceding page blank]
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1. INTRODUCTION

The potential advantages of strapdown or gimballess inertial

systems over conventional, gimballed systems have been recognized for

some time (Ref. 1). These include flexible packaging, low power con-

sumption, weight and volume, easy assembly and maintenance and con-

venient use of navigation sensors in autopilot functions. Continuing

advances in the development of smaller, faster and more compact digital

computers have led to increased interest in strapdown systems. It is

clear that these devices will perform acceptably for certain missions and

will be, in some cases, superior in overall cost and reliability.

With the advent of strapdown inertial systems, new problems in

achieving high sensor accuracies have arisen. Platform systems isolate

the inertial sensors from most rotational motion. However, when the

instruments are rigidly attached to the vehicle, they can be subjected to

a severe angular motion environment, resulting in errors which can be

rectified both in the instrument and in the attitude transformation calcu-

lation. For example, Ref. 2 shows that the magnitudes of vibration-

induced errors can be considerably greater than gyro drift rates which are

usually acceptable for navigation applications. Errors of this kind are not

observed during static tests. Thus, in order to measure their effects

accurately enough to assure adequate compensation during operation,

strapdown sensors must be subjected to dynamic testing.

Torque rebalance loops, which are a common feature of strap-

down sensors, lead to additional errors, as well as creating problems in

testing for motion-induced disturbance torques. While they provide data

in a form suitable for digital navigation computers, pulse rebalance loops

1.
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in particular introduce essential nonlinearities which complicate the

dynamic testing problem.

1.1 OBJECTIVES OF STUDY

The objectives of this study are summarized briefly as follows:

* Determine the input dynamical forcing functions best
suited for testing for all significant error coefficients.

* Determine necessary test durations and the nature and
accuracies required of the essential test equipment.

* Compare alternative methods of test data processing,
considering the possibilities for both on-line and
off-line computation.

" Suggest alternative test procedures which may substitute
sophisticated test data processing for complex test
motion machinery.

* Devise test procedures which will establish an munder-
standing of statistical predictability in the stability of
sensor parameters.

Substantial progress has been made regarding the first four

objectives in the above list.

The investigation concerns testing for certain parameters which

cause errors in single-degree-of-freedom sensors, especially those fac-

tors associated with angular motion, and therefore uniquely important for

strapdown sensors. These parameters correspond to a set of fixed

mechanical properties, such as products of inertia of various elements

of an instrument and the alignment of sensor components with respect to

2
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one another. Rebalance loop errors such as fixed scale factor error and

torquer nonlinearity are also considered. The study has not been con-

cerned with such items as torquer scale factor changes, friction, thermal

gradients and electromagnetic effects, all of which may combine with

angular motion to cause errors. Problems associated with rebalance

loop dynamics are not treated, but will be the subject of future work

related to high frequency testing.

The ultimate goal of this effort is to help formulate complete

test sequences, such as that pictured in Fig. 1.1-1. The illustrated

sequence begins with a set of physical measurements on the basic sensor

components, moves to a set of conventional static and low-rate tests which

produce estimates of the quantities normally sought for platform appli-

cations, and concludes with a set of dynamic tests designed to extract the

parameters uniquely important in strapdown applications. The require-

ments of a particular test sequence depend of course on the underlying

reasons for the test. Are they, for example, related to a research pro-

gram aimed at developing new sensors, or are they part of a mission-

oriented program involving a series of qualification and calibration tests?

The development presented herein is general enough to cover both

situations.

The report describes an analysis of dynamic testing of single-

degree-of-freedom sensors, emphasizing single-axis testing. This type

of testing involves the hardware elements pictured in Fig. 1. 1-2, con-

nected together as indicated. The sensor outputs and test table outputs

feed data into a computer, either directly for real-time processing, or

by way of a data storage medium for subsequent processing. Elements

of the strapdown sensor test problem are illustrated in Fig. 1.1-3. The

main test objectives are to determine the magnitude and stability of

3



THE ANALYTIC SCIENCES CORPORATION

PHYSICAL MEA-521NT dPHYSICAL MEASUREMENTS dimenslons, mass, inertioa, etc.

on Sensor Components

STATIC AND LOW RATE TESTING DATA PROCESSING

for example:
Torque-to-Balance Tests Hand Calculations
Servoed - Table Computer

mass unbo/aonce

random drift

sco!ale factor etc.

DYNAMIC TESTING DATA PROCESSING
for example:

High Constant Rate Tests
Angular Vibration Tests C m u

Linear Vibration Tests Recorder

motion -induced
error coeficients

Figure 1.1-1 Test Sequence Flow Diagram



THE ANALYTIC SCIENCES CORPORATION

R -820

• ou)tPUT

TER

SENSOR "

JE4SE

:... .TE5T 1 O

• ,:' :rTA B LE

... CO N TRO L  : : -

EOUJIP.

O L t

Figure 1.1-2 Dynamic Testing and Data Processing

5



THE ANALYTIC SCIENCES CORPORATION

PRESCRIBEO TEST MOTIONA

TEST SENSOR
MOTION OUTPUT
ERRORS ERRORS

TEST MOTIONS.1 STRAPDOWN DATA PARAMETER

I OUTPUTS
SENSRISESORPROCESSING ESIMTE

TESTI

MOTION -- -- -- -- ----

SENSORS
(OPTIONAL)

MOTION
SENSOR

C . ERRORS

DETERMINE:
* ALL PARAMETERS WHICH CAUSE ERROR TORQUE

* STABILITY OF PARAMETERS

Figure 1.1-3 The Strapdown Sensor Test Problem

parameters which cause error torques.- Test errors are associated with

imperfections in the motion-supplying equipment, the (optional) sensors

which may be used to measure the applied motion and those parts of the

strapdown sensor itself which are used as a measuring instrument (such

as torque rebalance electronics). The immediate goal of the study is to

recommend input motions and data processing procedures and to analyze

the effects of test errors on overall test accuracy and duration.
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1.2 ORGANIZATION OF THE REPORT

In Chapter 2 the overall test objective is defined as the iden-

tification and measurement of the causes of sensor errors. These are

grouped into three categories: motion-induced errors (such as those

caused by angular motion about the spin and/or output axes of a gyro),

residual errors (such as those caused by thermal and friction effects)

and rebalance-loop errors. Models for certain important motion-induced

errors in single-degree-of-freedom (SDF) gyros and accelerometers are

presented, and specialized in a way which is valid for testing SDF sen-

sors in the closed-loop (rebalanced) configuration, using low-frequency

test motion inputs. (In this context "low frequency" means considerably

less than 1/Tf, where rf is the time constant associated with the sensor

float dynamics. For typical inertial sensors a low frequency is therefore

20 Hz or less.) This development leads to a two-stage testing concept:

A set of basic parameter groups is measured directly from a sequence of

applied test motions, and individual parameters are subsequently deter-

mined, algebraically, from the values of the basic parameter groups.

Chapter 2 concludes with a general discussion of possible test motions and

introduces some of the reasoning behind the decision to emphasize

single-axis testing.

In Chapter 3 single-axis, low-frequency testing is studied in

detail. A particular sequence of sensor orientations with respect to the

test motion axis is recommended. The observable quantities from each

vibration test are a set of Fourier coefficients which define a periodic

function representing the applied torque. A set of six angular vibration

tests and a set of six linear vibration tests provide an array of observable

quantities which theoretically permit determination of a complete set of

basic parameter groups. The observable quantities generated by constant

7
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rate tests and vibration tests, in which only the average torque is

measured, are also presented. Three classes of test error sources are

considered: test motion errors, measurement errors and changes in the

sensor parameters. Motion errors and measurement errors have bias,

cyclic and high-frequency noise components. Measurement errors also

include the effects of quantization. Methods for analyzing all of these

error sources are developed. The error analysis is complete for analog

rebalanced sensors, including the case where data is quantized in digital

form. The analysis is incomplete for pulse rebalanced sensors, although

most of the error relationships developed for the analog case apply

equally well to the pulse rebalanced case. The first phase of the data

processing problem, that of estimating the Fourier coefficients, is formu-

lated as a problem in linear estimation, for which the Kalman filter is an

optimal solution. This formulation is useful in studying the combined

effect of random high frequency fluctuations in test motion errors and

measurement errors and in determining the useful test duration. The

analysis of quantization effects also lends insight into the problems of

choosing test time and the number of data samples per cycle of test motion.

Three candidates for this data processing function--Fourier analysis,

least squares estimation and Kalman filtering--are compared. Chapter 3

concludes by summarizing the results of example calculations for a

sequence of constant rate and vibration tests on a SDF gyro. Illustrative

values for the observable quantities as well as test error effects are

included.

Tentative conclusions and recommendations concerning the

choice of laboratory equipment are summarized in Chapter 4. Overall

conclusions and a discussion of the intended continuation of effort are

presented in Chapter 5. A significant recommendation stemming from the

8
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study to date is that great stress should be placed on the appropriate use

of conventional single-axis test devices, in a combined program of vibra-

tion testing and constant rate testing of strapdown inertial sensors. In

order to obtain the maximum usefulness from the test data, careful

attention should be given to the means for controlling and/or measuring

the supplied motion and to techniques for recording and/or processing

the sensor output data produced during the tests. These points are explored

in the body of the report.

Appendices A through D contain detailed technical material in

support of the discussions contained in the main body of the report.

Appendix E summarizes a brief survey of contemporary strapdown sensor

testing and test equipment.

9
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2. ERROR MODELS AND BASIC PARAMETER GROUPS

This chapter provides a general discussion of single-degree-

of-freedom (SDF) sensors and sensor test objectives and develops a set

of equations for motion-induced error torques. Based on these relations

a set of basic parameter groups is defined. These groups in turn help

clarify the problem of selecting appropriate linear and angular motions

to be applied during tests. The possibilities for test motions are

examined at the end of the chapter.

2.1 SINGLE-DEGREE-OF-FREEDOM INERTIAL SENSORS

Gyroscopes are angular motion sensors. They are commonly

based on the use of a spinning member, the rotor, as the sensing element. *

.All gyroscopes which use a spinning rotor can be classified under two major

groups: single-degree-of-freedom gyros and two-degree-of-freedom gyros.

The two-degree-of-freedom gyro senses angular motion directly, by

measuring the displacement of the rotor spin axis relative to the case.

The rotor may be mounted in mechanical gimbals, or may be supported

by electric or magnetic fields as in the electrostatically suspended

vacuum gyro and cryogenic gyro.

In the case of the single-degree-of-freedom (SDF) gyro the

spinning rotor is mounted in a gimbal which allows only one degree-of-

freedom relative to the case (see Fig. 2. 1-1). The equation of motion

of an ideal single-degree-of-freedom gyro can be determined by equating

reaction torques about the output axis to the "applied" gyroscopic

* Notable exceptions are the laser gyro and tuning fork gyro.

Preceding page blank 11
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Figure 2.1-1 Single Degree of Freedom Gyro
/

precession torque which results from case motion about the input axis,

viz:

I 0 +C Ka = -Hw. (2.1-1)

where

o = gimbal-to-case- angle about the output axis

I = rotor plus gimbal moment of inertia

C = viscous damping coefficient

K = spring constant

H = rotor angular momentum

wi = angular rate of the case about input axis

12
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As indicated by Eq. (2.1-1), a constant value of wi results in the following

steady-state value of a 0

H
a = -o K -i

Hence, this gyro is referred to as a rate gyro, as the gimbal angle is a

direct measure of case rate. In the situation where K = 0, we get a

steady-state gimbal angle rate,

H
o C i

Thus, gimbal angle is related directly to the integral of the input rate,

and this gyro is therefore called a rate integrating gyro. By mounting

the gyro rotor in an enclosure which serves as the gimbal and floating

the whole assembly in a fluid of appropriate density, the gyro output axis

bearings are unloaded, reducing some unwanted torques. This con-

figuration, called the floated rate integrating gyro, is extensively used

for very high accuracy applications such as inertial navigation.

In gimballed platform applications, the gyro float angle, a , is

continuously nulled by platform gimbal servo action. In strapdown system

applications, the gyro float angle is nulled by the application of a torque

generated by passing an electric current through the windings of an output

,axis torquer. The current, which may be continuous (analog) or a series

of pulses (digital), is derived from a measurement of the float angle. The

closed loop comprised of float dynamics, float angle pick-off, torquing

electronics and output axis torquer is called the rebalance loop. The

rebalance current is taken as a measure of input rate (for continuous

13
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torqued gyros) or incremental input angle (for pulse torqued gyros).

Figure 2.1-3 shows a general schematic diagram of a strapdown gyro

rebalance loop, including the following three types of torquing electronics:

linear analog-rebalancing, binary pulse-rebalancing and ternary pulse-

rebalancing.

The single-degree-of-freedom pendulous accelerometer is

illustrated in Fig. 2.1-2. Two major differences between this repre-

sentation of the instrument and that presented for the SDF gyro are

obvious. The direction perpendicular to the output and input axes is

called the pendulum (p) axis rather than the spin(s) axis. Also, the

instrument is assumed to consist of only two basic parts: a case and a

combination gimbal and pendulum. The equation of motion of an "ideal"

single-degree-of-freedom accelerometer is:

I00 + C + Ka o = m 6 p (2.1-2)

where the quantities not previously defined are:

m = gimbal plus pendulum mass

6 = displacement of the center of mass
p

f. = specific force on the case, along
1 the input axis

Strapdown accelerometers use the same kinds of rebalance

torquing schemes as those illustrated above for strapdown gyros. The

rebalance current in this case is a measure of input specific force (for

continuous torqued accelerometers) or incremental changes in the integral

of the input specific force (for pulse torqued accelerometers).

14
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Figure 2.1-2 Single Degree of Freedom Pendulous Accelerometer

2.2 TEST OBJECTIVES

A block diagram representation of a general test of a SDF

floated sensor in the torque-rebalancing configuration is shown in

Fig. 2.2-1. The diagram illustrates the sensor's nature as a device

which sums torques acting on the floated member. The "applied" torque,

M a, consisting of the input (gyroscopic or pendulous) torque and dis-

turbance torque, Md, is opposed by the torque-generator torque, Mtg.

The latter is fed back through the rebalance loop, in a manner which

tends to null the net torque about the gimbal output axis, Mo .

The controlled test environment includes all quantities (motion,

orientation, temperature, etc.) which cause input torques or disturbance

torques to be applied. By carefully controlling and/or measuring these

15
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quantities the test operator seeks to isolate and calibrate various sources

of disturbance torque. From the gyro itself the only quantities available

as inputs to the data processor are the voltages, e and e . The signal-

generator output, e , is a voltage which is proportional to the float angle

a . The output, e r, of the block labeled "rebalance electronics" is an

analog or digital indication of the rebalance torque Mtg. In the analog-

rebalance case the function of the rebalance electronics is to generate a

continuous current, i tg, which is proportional to the voltage, e . In this

case there is only one available output (e. = er) which is a measure of

both the float angle time history and the rebalance torque. In the pulse-

rebalance case e r is the sampled output of a nonlinear element; it is used

to determine the sign of a fixed-magnitude torque applied to the sensor.

The overall test objective can be defined as the identification

and measurement of the causes of sensor errors; that is, all causes for

a discrepancy between the output of the sensor and the quantity which that

17
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output is supposed to represent. The output of a strapdown gyro is either

a continuous indication of the input-axis angular rate, ui, or a digital

indication of incremental changes in the integral of .. Similarly, the
1

output of an accelerometer is a continuous or digital indication of the

input-axis specific force, fi, or incremental changes in the integral of fi"

Sensor error sources may be grouped as follows:

* Motion-Induced Error Torques

Error torques are the various components of the
disturbance torque, Md, shown in Fig. 2.2-1.
Motion-induced error torques are those directly
associated with case motions, either angular or
linear. They are sometimes referred to as
"dynamic errors."

o Residual Error Torques

- Residual error torques are all components of Md not
associated with case motions. For example:

1. Torques due to temperature gradients or non-
standard temperatures.

2. Torques associated with the orientation of the
sensor. These could include mass unbalance
effects during an angular motion test. (The
same parameters lead to motion-induced
torques during a linear vibration test).

3. Undesired friction torques

4. Undesired elastic restraint torques

5. Undesired electromagnetic effects

6. Torques of unknown origin

Any of these may of course change with time. How-
ever, during the relatively short test durations
required for the dynamic tests proposed the above
torques are expected to exhibit very little variation.

18
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o Rebalance-Loop Errors

Two broad types of rebalance-loop errors exist,
as follows:

1. The causes of discrepancies between the

rebalance torque and the value indicated by the

sensor output. Examples are torquer scale-

factor error and torquer nonlinearity.

2. Errors associated with sensor loop dynamics

which are not fast enough to follow the input
motion. In such a case the rebalance torque

time history is not a perfect replica of the

applied torque time history.

The main emphasis in this report is on testing for

motion-induced errors, with some attention paid to torquer errors.

Residual errors are not treated, except in the recognition that a "bias"

error torque is always present during a test involving applied motions.

Errors associated with the dynamics of the rebalance loop are not treated,

but will be the subject of future work related to high-frequency testing.

One approach to testing for fnotion-induced errors is to assume

no prior knowledge of the physical causes of such errors and to design a

procedure which seeks to discover the functional relationship between

M and various motions. Another approach is to start with a physically-

derived error model which defines such a functional relationship in terms

of unspecified parameters, and to design a testing procedure which seeks

to determine those parameters. The latter method is followed below.

However, if all the effects in the first technique are accounted for by one

or more parameters in the second approach, the two are equivalent and

the kind of testing described in Chapter 3 has considerable merit in either

case. (This point is discussed further in Section 24.)

9
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2.3 MOTION-INDUCED ERROR TORQUES

This section presents a set of physically-derived error

models for motion-induced error torques in SDF gyros and accelerom-

eters. These error models are taken from equations derived in Refs. 2

and 3. A general expression for the total "applied" output-axis

torque is:

M = Mbias + Mang + M li n  (2.3-1)

where

Mias a random bias error torque not
Dias associated with motion

M = the torque induced by angular
ang motions

M the torque induced by linearMli n  -
n motions

The error models presented below are given as expressions for M and
ang

Mli n for the two types of sensors. The notation used is summarized

in Tables 2.3-1 and 2.3-2. For any particular test situation the

total applied torque as given in Eq. (2. 3-1) must be considered.

420
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TABLE 2.3-1

GYRO NOTATION

f foi fs = case linear specific force

w , Wi ws = case angular rates

doZ' , 0 C s  = case angular accelerations

a o, a V as = gimbal-to-case angular misalignments

8 , ai = rotor-to-gimbal angular misalignments

I 0yI. I ss = float moments of inertia (including
°' ' ss gimbal and rotor components)

1I00 1 . I = rotor moments of inertia

r r r

Ios ,oi ,I si = gimbal products of inertia
gg g

ns = rotor spin rate relative to the gimbal

H =I1
ss S

r

6 o, 6i8, 6s = float center of mass displacements

m = float mass

Kii , Kss = direct compliances

K.is Ksi , K , K. = cross compliances

The subscripts, o, i, s refer to output, input and spin

axes, respectively.
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TABLE 2.3-2

ACCELEROMETER NOTATION

f P = case linear specific force resolved
into case-fixed axes

, woi, w = case angular rates resolved into
0 J case-fixed axes

Sai = gimbal-to-case angular misalignments

I00,'i I I = float moments of inertia

Ioi' IO Ipi = float products of inertia

- -= float center of mass displacements

(in the absence of acceleration)

m = float mass

K.., K = direct compliances
11 SS

K. K Kp, K. = cross compliances
Ip, pl po o10

The subscripts o, i, p refer to output, input and pendulum
axes, respectively.
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2.3.1 Single-Degree-of-Freedom Gyros: Angular Motion

Based on an expression derived in Ref. 2 for torques due to

angular motion of the case of a SDF floated gyro, we can write:

Mang = Ioo (o+ 6) + (,,-Is s) ww - H w,

" Iosg s

S i ii) 2s 2i 2o
g
[(IjS ) -w i + Hw]

+ a i- Iss-Ioo) ( ) - H-I(2 3-2 2
+ 0 -1". W- W . + Hw

O(SSr r) S S1

+ Pi [Iss ooI 0r)cs + ow'i ss r 's (2. 3-2)

where the term, Qw , has been added to account for the experimentally-

observed effect reported in Ref. 4. We regard the gyroscopic term,

--Hwi, as the desired input torque. Thus, terms other than -Hw i on the

right hand side of Eq. (2.3-2) must be regarded as error torques. The

term I & is the inertial reaction torque corresponding to gimbal-to-case

angular acceleration. In combination with float viscous damping torque,

C& , it is responsible for the basic gyro float time constant, and appears

in the "ideal" gyro model. The term Io o is an error caused by the

gimbal output axis inertia and can lead to significant "pseudo-coning"
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errors in systems applications. The other term in the first line,

(Iii - Iss ) ws wi, is an anisoinertia error torque which can lead to large

rectification errors during angular vibrations. The product-of-inertia

terms in the second and third lines are probably less important,

but can also generate large constant torques. The terms involving ao0

are coupling error torques (since a 0 is the float angle which results from

all applied torques, principally H wi) and can also lead to large errors.

The terms involving as, ai olo and $i represent the interaction of various

component misalignments with angular motions; the most significant are

the -asHw and $ Hw s terms which result when the sensitive axis of the

gyro does not lie exactly parallel to the input axis fixed in the case.

2.3.2 Single-Degree-of-Freedom Gyros: Linear Motion

Ref. 2 provides the following equation for torques about the

output axis of an SDF gyro generated by linear motion:

M um 6 f + 6 f. -6.f + m [K f f. + K .f2
li n  oo s ofof1 s

+ - K f.f - K f -K. f (2.3-3)( ss i i s loos i

Since the only desired torque is the angular motion term, HWi, appearing

:in Eq. (2.3-2), all of the terms in Eq. (2.3-3) must be considered error

torques. The terms multiplying m have the form of mass unbalance

torques, although the first one, m 0 fo, is thought to be due to thermal

convection effects. The terms multiplying mn2 are linear compliance

effects.
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2.3.3 Single-Degree-of-Freedom Accelerometers: Angular Motion

Ref. 3 provides the following equation for torques about the

output axis of an SDF accelerometer generated by angular motion:

Ma Ing (E + o 0)+ Ii (a - + o (p - oi)

1o 1 o op\ pp p 1 0)/

- p [(Ip - I ii) oWp + oo + i i(Ip -Iii) owi+Ioo p]

(2.3-4)

- Since the ideal accelerometer is insensitive to angular motion,

all of the terms in Eq. (2.3-4) must be considered as error torques in

the SDF pendulous accelerometer. However, as in the case of the SDF

gyro, the first term, I 00 , together with any damping torque about the

'instrument output axis, is usually considered as part of the unavoidable

:sensor dynamics and included in any "ideal" SDF pendulous accelerometer

'model. The remaining error terms can be divided into several broad

categories similar to many exhibited by the gyro. Sensitivity to angular

accelerations is present. The principal contribution, that caused by

angular acceleration about the sensor output axis, is unavoidable because

of the nature of the pendulous acceleration sensing instrument. Several

:anisoinertia terms and product of inertia terms also appear.
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2.3.4 Single-Degree-of-Freedom Accelerometers: Linear Motion

Ref. 3 provides the following equation for torques about the

output axis of an SDF accelerometer generated by linear motion:

M m= mpf.+of -a +a) - m6 i(fp + aifa of)
Un p op p p o

+m 2 K .f2+K 0 f.f 0 + K -K..f.f -K. ff -K. f2 (2.3-5)
pi po ~ \pp11 p loop 9pp

The first term of Eq. (2.3-5), mS f., measures linear
p 1

acceleration along the input axis. This is the only output axis torque in

the ideal pendulous accelerometer. The pendulosity m6 is designed into

the instrument with care. All the remaining terms in this equation con-

tribute errors to the accelerometer. The term m6 a f is basically ap Op
cross-coupling error arising from rotation about the single axis of

freedom and m5 a f results from gimbal-to-case misalignment. Since
ppo

accelerations along the input axis will cause considerable excursions of

the gimbal angle, a , from null, sizeable rectification errors can be

produced in this instrument by properly phased linear vibrations with

components along the input and pendulum axes. The second term of

Eq. (2.3-5) illustrates error torque contributions from unwanted mass

unbalance and the last line expresses compliance error terms. It can be

seen that linear compliance effects can produce constant error torques.

The error in indicating linear accelerations along the case fixed input

axis of an SDF pendulous accelerometer is simply the sum of all error

torques, divided by the pendulosity, m6 .
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2.4 BASIC PARAMETER GROUPS

In this section the error models given above are specialized and

extended slightly. This development is based on approximations which are

valid for the closed-loop sensor configuration with low-frequency test

motion inputs. The motivation for this development is to obtain useful

relationships in which the disturbance torque is expressed as a function

of motion components and sensor parameters which remain essentially

constant over a given period of testing.

The motion-induced error models given above are general in

that they apply to both the open-loop and closed-loop configurations, but

they do not have the desired functional form because of the presence of

time-varying terms a 0, o , Os and H. The symbol a represents float

angle which varies in response to all applied torques. The symbol s

represents the rate of change of rotor speed with respect to the gimbal

which depends on the rate of change of case angular velocity about the

spin axis, ws, and the rotor speed control loop dynamics.

When the gyro is torque rebalanced and can be viewed as a

closed loop system, we can write approximate expressions for a as a

function of certain motion quantities. These can then be substituted into

the above equations to provide the kind of useful functional relationships

mentioned above.
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2.4. 1 Analog Rebalancing

Consider, first, an analog-rebalanced SDF gyro experienc-

ing angular motion. For the purpose of computing the float angle, the

dominant applied torques can be represented by:

Ma = -oo b - Hwi (2.4-1)

The rebalance torque is given by

M = Ka (2.4-2)
tg 0

We restrict our attention to low frequency test motions, so that Mo is

kept very small at all times and Mtg remains an accurate replica of

M . Consequently,a

M = Ma Mtg - I o O°  Hw. + Ka 0 0 (2.4-3)

S a tg 0 28
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Therefore,

I
- H oo (2.4-4)

o K i K o

We substitute Eq. (2.4-4) into Eq. (2.3-2) and drop the term issrs

which is extremely small in practice. The result, after rearranging

terms, is:

2
Mang = k1cbi +k 2 d o +k3 s+k 4 w i+k 5  o +k 6 s +k 7 i

2 2i+k k s k i o+k10i Is+k11 WoWs

3 2 2 2
+k12 W - kl2 Wis+kl3 o Ws+kl4o w - k14 (o s (2.4-5)

where k1 through k 1 4 are defined in Table 2.4-1(a). We shall call these

coefficients basic parameter groups. Table 2.4-1 divides them into four

types, 9, X , y and p, according to whether they multiply functions

involving angular accelerations or functions which are linear, quadratic

or cubic in angular rate, respectively. These classifications are useful

in organizing both the analysis and the display of results concerning

observable quantities and testing errors (see Chapter 3).

29-



THE ANALYTIC SCIENCES CORPORATION

TABLE 2.4-1

BASIC PARAMETER GROUPS

Angular Motion Tp

a) Gyro b) Accelerometer

kc2 = 'o, 2 = 'o u

kc3 = os9 i'ook3=Iop+a10

k4 = -H
4x

kc5 = aH

kc6 =OH

k7 = -I s9- 00 (Ia - 'r)k=-Ip

k8 =Q

k9=-0,9+ is - ii 0 Ia - lor k =- 1 op + ai( pp - I,,)v

kl H/ ( i) k60(I(p - '

kil = 10]. 9- a s - %~) k7 = I oi- a,(I ,,, - ii

kc12 = (H/K) (I.. - 1.~) p

kc13 -100 H/K 
J

Linear Motion

c) Gyro d) Accelerometer

kc1 = M88  I = m8p

kc2 = m8o k2 = -apM8 p- &im81

k 3 =-m81  I 3 = -m 8 i

k4 = K 1  I 4 (mpi~8+ 2~

5  is -mK~ 5 = p2 %

2 Ic 2 K
k a=m K. 0  k6 =mKp0

I=m2Q 2 (K" i) I 7 (m2/) 82 + mn2 (K Kii)

k8 , _m~lo ka =-m 2K i0
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- Except for the fact that H appears in several of them, all of

the groups defined in Table 2.4-1 are functions of sensor parameters

which remain essentially constant* over a given period of testing. We

can write:

H=I n
ss sSS
r

= Iss+A
ss s s)

r (nom

= H +I A (2.4-6)
nom sS s

r

where A n represents the deviation of rotor speed with respect to the
s

gimbal due to a dynamic lag in the action of the rotor speed control loop.

The resulting variations in k, k , k10, k12 and k13 will cause extremely

small variations in the corresponding torque components appearing in

Eq. (2.4-5). These can also be dropped, permitting us to treat most of

the basic parameter groups as constantS. The exception is the gyroscopic

term, Hw i , which becomes:

Hw. = Hnom'i+ Iss AS. (2.4-7)
1 nom I ssr sI(.47r

We have assumed here that float axis misalignments (ai, as and ap)
and rotor axis misalignments (0i and o) are constant. If future results
indicate that these quantities significantly vary due to case motions, the

only changes in this development which are likely to be significant
involve the k 5 and k 6 terms in Eq. (2.4-5) and the k 2 term in Eq. (2.4-15).
The affects on kl, k3 , k7 , k9 and kl1 in Table 2.4-1(a) and on kl, k 3 , k5

and k 7 in Table 2.4-1(b) will be very small if the misalignments are of the

order of arc seconds.
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The second term in Eq. (2.4-7) is zero except when the applied test

motion involves both wi and a rapidly varying ws. Therefore, most of

the time the parameter groups defined in Table 2.4-1(a) can be con-

sidered constants with H = Hnom . For example, with a vibratory angular

motion about the spin axes, if the frequency of vibration is low compared

to the wheel hunt frequency (typically a few cycles per second), A Os = 0

and Hw. = Hnom i. If, on the other hand, the frequency of oscillation is

considerably above the wheel hunt frequency, the rotor speed variation

will become:

A s  s (2.4-8)

That is, Ws is varying so rapidly that the speed control loop cannot follow

it at all (see the more extensive discussion in Ref. 2). Consequently,

Hn Hom i. Iss w s (2.4-9)
r

and the "extra" term can be added to the k10 WiW s term in Eq. (2.4-5).

In summary, all of the parameter groups defined in Table 2.4-1(a) can

be considered independent of test motion frequency except k 1 0 , which

varies from:

H2
k nom I i -I (2.4-10)

10 K
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for angular oscillations about the spin axis which are well below the

wheel hunt frequency, to:

2
H

10 K ss ss r

r Ir
'for oscillations well above the wheel hunt frequency.

The expression of the applied torque in the form of Eq. (2.4-5)

leads to a testing concept in which the data processing portion of the test

procedure is divided into two parts. In the first part the gyro output data

from a sequence of tests is processed so as to determine values of the

basic parameter groups. The second part is a purely algebraic problem

-in Which the basic parameter groups are provided and the individual

'parameters appearing in the expressions in Table 2.4-1 are to be extracted.

The first phase is crucial because it bears on the choice of test

motions and determines test accuracy and useful test duration. Note,

for example, that some basic parameter groups appearing in Eq. (2.4-5)

cannot possibly be found by applying a constant rotation rate since they

-multiply angular acceleration terms (&i, o, cs). This indicates that if

tall parameter groups are to be determined, the testing program must

include some motions more complex than constant rates.

In the second phase some of the parameters can be found

algebraically and some cannot, but there is no way in which unusual test

motions can be used to separate the effects of individual parameters which
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appear in a given group. For example, consider the single term from

Eq. (2.4-5) involving the product, w0 ws .

-k o o W s - a I i os (2.4-12)
g

No matter what time history of w and ws is applied to the gyro case, the

term involving lOig and the term involving a s will both remain proportional

to the product, wows, and their separate effects cannot be distinguished.

However, if values for both k1 and k11 (see Table 2.4-1(a)) have been

determined, and if 100 and (Iss - Iii) are considered known, then values

for 1oig and a s can be determined algebraically.

It should be noted that we could have started with an expression

like that of Eq. (2.4-5), without assuming any knowledge of the physical

causes of error torques, and simply set out to design a testing procedure

which would determine values of the coefficients of the various motion

functions. This corresponds to the first approach mentioned in

Section 2.2.

For an SDF accelerometer basic parameter groups defined in

Table 2.4-1(b) correspond to the following expression for torque due to

an angular motion:

M =k c +kb k 2 -kw2
ang = ki i +k 3  +k 4 i -k 4 p

+ k k +k +k8Co w 2 2
+k5'o i+k6 i p+ "wp+k8 0  -k 8  A

(2.4-13)
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where we have made use of the approximation:

I
o w (2.4-14)

o K 0

.which is analogous to Eq. (2.4-4) in the SDF gyro case. For the SDF

:gyro undergoing linear motion:

2 2
M = kf.+kf +k f 2f +k ff

lin 1 i 2 o 3 s 4 i 5 s

+k fif + k.f s + k8fofs  (2.4-15)
6io T1s 8os (.-5

where the corresponding basic parameter groups are defined in Table

2.4-1(c). For the SDF accelerometer undergoing linear motion:

M =k f+k f.+k f +k f2 +k f2
lin 1i 2i 3p 4i 5p

+k 6fif +kJ.f +k 8f f (2.4-16)
6i1o ixp 8 op

where we have used:

P
a m f. (2.4-17)

and the corresponding basic parameter groups are defined in

Table 2.4-1(d).
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2.4.2 Pulse-Rebalancing

The basic parameter groups defined in Table 2.4-1 may be

valid for some pulse-rebalanced sensors as well, even though Eq. (2.4-2)

is no longer true. In some cases the float angle, a , experiences a high-

frequency limit cycle* superimposed on a slowly changing "signal" value

which follows quite closely the applied test motion. According to dual-

input, describing-function theory (Ref. 5) the nonlinear torquing logic

operates on these low frequency signals, which occur in the presence of

the limit cycle, almost as though it were a linear gain. Therefore, we

can write:

M =-M =-K N K (2.4-18)
a tg sg B tg o(2.4-18)

where:

Ksg = the signal generator gain

K = the torque generator gain
tg

NB  = the effective gain of the nonlinearity
as seen by the "signal".

and the overbars indicate time-averages taken over intervals which

are long compared to the limit cycle period but short compared to

This is usually true in the binary-torquing case and for gyros with
time-modulated torquing; it is usually not true in the ternary-torquing
case. See Ref. 2.
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test motion variations. It follows that, for the SDF gyro experiencing

angular motion:

H 00I

0 H ioo K o (2.4-19)ao K wiK o

p p

where K is the effective pulse-rebalance loop gain:
p

K= K N B KKp sg N tg (2.4-20)

For the SDF accelerometer experiencing only angular motion:

I

0 oo (2.4-21)
p

For the SDF accelerometer undergoing linear motion alone:

m8
S- P f . (2.4-22)o K 1

p

Equations (2.4-19), (2.4-21) and (2.4-22) can be substituted

into Eqs. (2.3-3), (2.3-4) and (2.3-5). When this is done we obtain the

same error torque equations and basic parameter groups as in

Section 2.4. 1. These equations ignore certain high frequency, zero-

average cross-coupling torques associated with float angle motion caused

by the limit cycle.
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2.5 TEST MOTION POSSIBILITIES

In order to determine values for all basic parameter groups

appearing in Eqs. (2.4-5), (2.4-13), (2.4-15) and (2.4-16) it is necessary

to choose a sequence of test motions which excite the various terms in

these equations in such a way that their individual effects can be separated

and measured. An important consideration in this choice is the desirability

of keeping the test motion equipment as simple and accurately controllable

as possible. For the angular motion-induced terms of Eqs. (2.4-5) and

(2.4-13) it is necessary to specify a set of time histories of angular

velocity components (wi, -wo, Ws ). These cannot be confined to constant-

-rate tests alone since there are a number of terms involving angular

accelerations (6i, do, cs) which must be excited. For the linear motion-

induced torques of Eqs. (2.3-15) and (2.3-16) it is necessary to specify a

sequence of specific force (fi, fo, fs) time histories.

Consider the following list of possible motion functions which

are discussed, in turn, below:

* Step functions (constant angular rates and constant

specific force components)

* Ramp functions (constant angular accelerations)

* Sinusoidal oscillations (angular and linear vibrations)

° (a) motion about or along a single case-fixed axis

(b) oscillations about two axes with arbitrary phase

(c) oscillations about three axes with arbitrary phases

* Combinations and special functions

Note that two- and three-axis in-phase oscillations are actually single-

axis oscillations where the axis is chosen to produce a specified ratio

between principal axis components. (For example, angular oscillation
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about a line midway between the input and spin axes of a gyro with rate

W sin wt, produces the principal axis in-phase oscillations,

o = os = (W/2) sin wt.

Constant angular rates may be applied to inertial sensors by

conventional laboratory test tables. Special mounting fixtures are

required for various "combined-rate" tests. For example, if equal input-

axis and spin-axis rates (wi and ws) are desired simultaneously, the

gyro must be mounted with the line midway between these two axes coincident

with the test table axis. Constant specific force components may be obtained

simply by placing the sensor in a given orientation in the earth's gravi-

tational field. Alternatively, it may be centrifuge tested at a higher g-

level. (This produces a combination of constant angular rate about the

centrifuge axis and a constant specific force, somewhat complicating

matters.) These tests are all useful and are commonly performed in

testing inertial sensors. Their major limitation is that, in testing for

angular-motion-induced errors, they cannot excite all of the terms appearing

in the error model equations. It is clear, therefore, that some test motions

from the last three items in the above list should be included in a complete

testing program.

Angular-rate ramp functions, involving constant angular

accelerations, could be used to excite the terms which are not excited in

constant rate testing. Supplying such motions would require the operation

of standard test tables in an unconventional way, and it would be difficult

to maintain a significant acceleration level for a long period of time

because of the high rates which would be reached. There would also be

serious data processing problems because of the continuously increasing

torque levels associated with various parameter groups. For example, a

constant angular acceleration about a gyro output axis would cause a
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constant torque, k2cbo [See Eq. (2.4-5).], and a linearly increasing
2

torque, k5 o, and a parabolically increasing torque, kwo.

Angular and linear single-axis sinusoidal oscillations are

standard test motions which may be obtained using conventional techniques.

Since first and higher derivatives automatically occur as sinusoids, all

terms in the error models can be excited by a sequence of sinusoidal

oscillations about various axes. As with ramp functions the torque levels

during sinusoidal motion are continuously changing. However, they are

cyclically repeating, affording the opportunity to average data over many

cycles. The data processing procedures required to separate and measure

the effects of various parameter groups during such testing are developed

in some detail in Chapter 3. (They represent a considerable increase over

those usually employed in test procedures which seek only to measure

average effects.) It is demonstrated that a particular sequence of six

single-axis vibration tests, each using a different test motion axis fixed

in case coordinates can theoretically be used to isolate and measure all

terms which appear in the error models we have adopted. (Some effects,

such as torques associated with k 1 2 and kl4, are extremely small and

:probably cannot be measured in practice in low frequency testing. But if

,they are too small to be measured, they are also likely to produce insig-

* nificant errors in operational systems. On the other hand these effects

.,should be reviewed in later considerations of high frequency testing.)

Because a program of single-axis testing which includes constant

angular rates and oscillatory motion has the capability mentioned above,

multi-axis out-of-phase testing and angular rate histories which are

combinations and special functions of time have not been studied in detail.

Multi-axis test tables capable of supplying out-of-phase angular motions
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are available and these should, of course, be used to check against

predictions based on single-axis testing. However, a major conclusion

of this study is that for strapdown inertial sensors considerable emphasis

should be given to single-axis low-frequency testing.

The ultimate simplicity and usefulness of single-axis low-

frequency testing will depend on the extent to which:

S* all motion-affected error torques, including those
not covered in the error models presented here,
are frequency independent.

* It is valid to treat pulse rebalancing electronics as

linear components in the fashion outlined in
Section 2.4.2.

o it is possible to predict the significant system errors
from the results of single-axis low-frequency tests.

A combination of experimental evidence and further analysis is needed

in order to properly guage these matters.

Chapter Summary - Error equations for single-degree-of-

freedom (SDF) gyros and accelerometers are developed for the special

case of closed-loop low-frequency testing. The resulting expressions for

torques applied to the instrument output axes are linear in a set of "basic

parameter groups" defined herein. The expressions for angular-motion-

induced error torques include fourteen such parameter groups for SDF

gyros and eight groups for SDF accelerometers. The expressions for

linear-motion-induced error torques include eight groups for both SDF

gyros and accelerometers. The parameter groups are further divided

into four categories, according to whether they generate error torques

proportional to angular acceleration or linear, quadratic or cubic,
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'respectively, in angular rate or specific force. These classifications

are useful in organizing both the analysis and the display of results

developed in the following chapter.

Potential test motions are reviewed and qualitatively compared

in light of the applied torque expressions mentioned above. A major con-

clusion is that theoretically the effects of all parameter groups can be

.observed separately using test motions which involve angular accelerations;

-it is not necessary to resort to multi-axis, out-of-phase test motions.
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3.. SINGLE-AXIS, LOW-FREQUENCY TESTING

This chapter presents a detailed study of single-axis, low-

frequency testing, including sinusoidal vibration testing and constant

angular rate testing. A particular set of sensor orientations with respect

to the motion axis are recommended and the information which may be

extracted from each test is outlined for angular and linear vibration tests

as well as constant rate tests. Test accuracy, useful test duration and

test -data processing are investigated, with emphasis on the angular motion

case. Example calculations are given at the end of the chapter.

3.1 OBSERVABLE QUANTITIES

This section identifies the quantities which may be observed as

a result of single axis tests and the basic parameter groups which may be

determined from the quantities observed during particular types of test

sequences and combinations thereof. The following types of tests are

considered:

* Constant Rate Testing

* Sinusoidal Testing, Averaging

* Sinusoidal Testing, Harmonic Extraction

The last two involve the same test motions, but are distinguished by the data

processing performed. In sinusoidal averaging the only measurement is of

the average torque over many cycles, yielding information about constant
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.torque only, part of which is due to rectification of dynamic effects. In

sinusoidal harmonic testing the time-varying output signal is processed

to yield additional information. Results are summarized in

Section 3. 1. 3.

3. 1. 1 Vibration Testing

A general single-axis angular vibration of amplitude W and

Sfrequency w can be represented by the following three equations:

.i = c. W sin wt (3.1-1)

w= c W sin wt (3.1-2)

ws = cs W sin wt (3.1-3)

where ci, co and cs are the direction cosines relating the vibration axis

ato the input, output and spin axes of the gyro being tested. It is shown in

,,Appendix A that when Eqs. (3.1-1), (3.1-2) and (3.1-3) are substituted

cinto Eq. (2. 3-5), the resulting expression for applied torque is a periodic

:function represented by a 7-term trigonometric series of the form:

M ang B + S1 sin wt + C cos Wt

+ S2 sin 2wt + C2 cos 2wt

+ S3 sin 3wt + C3 cos 3wt (3.1-4)
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When three similar equations representing accelerometer case motion

(involving p and c rather than ws and c ) are substituted into Eq. (2. 3-5),
p p s s

a similar periodic function of the form of Eq. (3. 1-4) is found. This

result is also developed in Appendix A. In both cases, expressions for

the coefficients, B, S1, C1, etc., in terms of the basic parameter groups

and the quantities defining the test motion have been derived.

Figure 3. 1-1 illustrates the general situation for a single-axis

angular vibration test. The first block represents the motion-induced

torque model developed in Section 2.4; its output, Mang, can be viewed

as a 7-term periodic function of the form of Eq. (3. 1-4). Added to this is

a constant torque, Mc, which exists in the absence of the applied angular

vibration. It consists of the terms, Mbias and Mlin, defined in Eq. (2.3-1)

and a small additional torque due to the angular rotation rate of the earth.

Since the only applied test motion is an angular oscillation, the linear-

motion-induced torque is determined by the sensor's orientation in the

earth's gravitational field. This torque can be held constant by orienting

the vibration axis or "test axis" in the vertical direction. The complete

applied torque, Ma, is, therefore, also represented by a 7-term function

of the form of Eq. (3. 1-4) in which the bias coefficient, B, includes the

constant, Mc, as well as the average (rectification) torque resulting from

the applied sinusoidal angular motion. Since the test motion frequency has

been assumed to be low compared to gyro loop dynamics, the torque

generator output is represented by the same 7-term function. The gyro

output er is a scalar function which is proportional (ideally) to the torque

Mtg. Therefore, a harmonic analysis of the output data should produce the

seven Fourier coefficients which define the input periodic function Ma(t).

For any given choice of sensor orientation with respect to the test axis

there is a set of seven such coefficients which are the observable quantities
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Figure 3. 1-1 General Single-Axis Angular Vibration Test

for that particular test. Estimation of these seven quantities requires a

more sophisticated data processing procedure than the conventional one of

measuring average drift rate over a long period of time (which is simply

the measurement of B, the first of the seven coefficients).

Consider now the six test orientations pictured in Fig. 3.1-2.

In three cases the sensor is mounted with one of its principal axes coinci-

dent with the test motion axis. In the other three cases the sensor is

mounted with a line midway between two of its principal axes coincident

with the test axis. These pictures apply to a SDF gyro or SDF accelerom-

eter, depending on whether the third principal axis is labeled s or p.

Tables 3.1-1 and 3.1-2 present expressions for the seven trigonometric

coefficients which correspond to each of these six test axis choices for both

instruments. Each Fourier bias coefficient, B, includes a constant torque

term, Mc, which represents the disturbance torque which exists in the

absence of the test motion. It is a function of orientation, temperature, etc.
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R-805

TEST MOTION AXIS

(tma) tma tmo

s, p o

0 SPp

tma tma tma

SspP

Figure 3.1-2 Six Candidate Test Orientations
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TABLE 3.1-1

FOURIER COEFFICIENTS: GYRO ANGULAR VIBRATION TESTS

B S1  C1 2 C2  83 C3

io *W sin t Mc .W k5W kwW 0 kW2 0 0

-W sn at Mc -k W2  
kW k kW 0 k W2 0 0

- wsn a_ M +k 2  
k W.W 0 kW 2  

-kl 2  
3  

0

0 ws  MCO+ -k - k8  /k2+ k3) W 0 k 1
+k W l

5
3 2

6 , 0 kl4

I k 14W
2sin wt +k1)W 2  

- k 14 w W 3  +kkL)W2

W Mcio' (Y k8 (k4+)W k51 1+ W kT k8

S sin wt M k0 6  1 +k3 ww 0 100 0

Otherwise, all of the coefficients are functions of the test motion quantities

and the basic parameter groups only. The bias term, B, is the "dc"

level of the output waveform and represents the conventional, average

torque measurement. The other coefficients are generated by a harmonic

analysis of the "ac" portion. These expressions were obtainedby
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TABLE 3.1-2

FOURIER COEFFICIENTS: ACCELEROMETER
ANGULAR VIBRATION TESTS

B C1  C2  C3

Test Motion (M+ w2) (1W +Mc3) (w) W C2)1 w3

o = Wsin wt Mc  k2 wW 0 0
o

p = W sn t Mc -k 24W 2  k 3wW (k 4 
2  0

w = Wsin wt Mi+ 4 2 kw - k4 2 0

M - ~k4 - k)W2 1 (k2+ k 3)W ksW3 k4 - k ) W2  1 k8 W

..... = - sin wt op 
8

W sint o

ipM + k6' 1 k1+ k3 W "B 2
sin wt ip

specializing the general expressions derived in Appendix A. For example,

for a test motion axis midway between the input and output axes we have:

c. 1/ 2

s = 0 (3.1-5)
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Therefore, in the case of the gyro, the expression for the coefficient of

the sin 3 wt term [Eq. (A-5(f)] becomes

1 3 3 2
S3  4 k12 W i - CiCs

- k W3  (3.1-6)
8 12

The output data from a sequence of six tests on a given instru-

ment can be processed to yield an array of 42 observable quantities. If

the six test axes are those pictured in Fig. 3. 1-2, the 42 quantities cor-

frespond to the expressions given in Table 3.1-1. Examination of this

array of expressions shows that, for a given test amplitude and frequency,

knoiwledge of these 42 quantities is more than enough to determine all of

the basic parameter groups, k1 through kl4. All six tests are required,

but the complete set of 42 observables provides a considerable amount of

iredundant information. The testing concept outlined in Section 2.4 can now

be made more definite as shown in Fig. 3.1-3. The gyro data may be

processed (stage la) on-line to produce the seven observable quantities

(Fourier coefficients) during each test or it may be recorded for sub-

sequent off-line processing. In either case, the next data processing

stage, Ib, is an off-line stage in which 42 linear algebraic equations are to

be solved for 20 un1mknowns; 14 basic parameter groups and 6 constant tor-

ques, M . Approaches to the solution of this over-specified problem are

discussed briefly in Section 3.4. The final data processing stage, II, is

the purely algebraic problem of solving for individual parameters, given

values for the basic parameter groups.
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R-25P

Sequence Sensor Dato Processing Arroy of 42 Parometer
of Six I Output Coe ficients Grups Individul

Single - Axis Phase Io Phaselb "Phase I -omer0
Vibration on-hneI 

Para eters

Tests off oIr ine/ (off-line) (off -lne)

Figure 3. 1-3 Data Processing Phases: Single-Axis Vibration Testing

Table 3.1-3 presents expressions for the observable quantities

(Fourier coefficients) which correspond to linear vibration tests in which

the vibration axis has the same relationship to the sensor axes as in the

six angular vibration tests described above.* For these linear vibration

tests the test axis is chosen to be horizontal so that the specific force along

the test axis has a sinusoidal form with zero average. The constant tor-

que,- M , includes the usual bias term, Mbias, a small term, Mang

associated with the constant earth rate and a term associated with the

constant gravitational field. The number of observable quantities for each

test is three, corresponding to three-term trigonometric functions which

are derived in Appendix A for single-axis linear vibration tests. In both

cases (gyro and accelerometer) the set of 18 observable quantities is more

than enough to determine all basic parameter groups.

Inspection of the expressions tabulated in Tables 3.1-1 through

3. 1-3 reveals that, for both SDF gyros and SDF accelerometers, complete

sets of basic parameter groups may theoretically be extracted from a

sequence of six angular and six linear vibration tests. The angular

In the case of the gyro it will be extremely difficult in practice to
measure the mass unbalance terms (kl, k2 , k 3 ) because of the small
angular motions which must inevitably be present. Extraction of these
coefficients is performed quite satisfactorily during simple tumble tests.
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TABLE 3.1-3

FOURIER COEFFICIENTS: GYRO AND ACCELEROMETER
LINEAR VIBRATION TESTS

B S C2

Test Motion .M + A2) 1) A2

a 0 = Asin wt M c o k2A 0

as,p = Asint + k3A -1k5A2

12 12
a = Asin t M + k4A 2  klA - k4A

a =a
ao s, + k 1 (k + k) A - 5 + k8) A

A os J3- sin wt

ai = a1o M0 + k4 + k)A 2  1 1 + k2)A - k4 + k A 2

A CIs +1 + q'A
-sinwt

a i =a s M +(k 4 + k + k A2 (k + k)A 44 + k5 + k) A 2

A Cis /
A sin wt

vibration tests should be conducted with the vibration axis (about which the

sensor is rotated) in the vertical direction. The linear vibration tests

should be conducted with the vibration axis (along which the sensor is

accelerated) in the horizontal plane.
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3.1.2 Constant Angular Rate Testing

When a constant angular rate is applied about any axis fixed in

the sensor, the resulting applied torque is a constant. A general constant

rate of amplitude W can be represented by the equations:

= ci W (3.1-7)

o = c W (3.1-8)

= c W (3.1-9)
s, p s, p

For any values of the direction cosines the resulting expression for the

applied torque (see Eqs. (2.4-5), (2.4-13) and (2.3-1)) takes the general

form:

M = M + W + W2  3  (3.1-10)
a c

Table 3.1-4 expresses the coefficients, X, y, and p, in terms of basic

parameter groups for the six test motion axes shown in Fig. 3.1-2. In

each case the Me term represents the constant torque which exists in the

absence of an applied angular rate (i. e., when W = 0). For each test axis

it is necessary to measure torque for three non-zero values of W in order

to separate X, y and p terms.

Inspection of the left hand (gyro) side of Table 3.1-4 shows that

estimates of the X terms lead directly to estimates of the parameter groups,

k4 , k 5 and k 6 , and estimates of the y terms lead to the groups, k 7 ,k 8 , k9 , k1 0

and kll. For accelerometers the X terms do not appear while the y terms lead

to estimates of the groups, k 4 , k 5 , k 6 and k 7 . (These groups are defined in

Table 2.4-1.)
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TABLE 3.1-4

APPLIED TORQUE EXPRESSIONS: CONSTANT RATE TESTING

M =M +X W+yW2 +pW3

Test . a c
Motion Gyro Accelerometer

o = W M+ k5W + k8W2  
Mo o

= W M + k6W - k7W2  M - k4 W2

s P

= W M +k4W+k7W2 + k12W3 M +k4W 2
..... ci 4 7c12c. 4

1 1

Wo =W Mk + k5+k6 W k +k+k ll 2  -k 4 +k 7W2
o , p os 2 op 2

S+ k4+k 5] + [k 7 +k 8 +k9 W k 12 W [k4+kJ
S = O W / 2  Mci o +  + W 2  

MC 2 W

~Ci 3 =W/ M + 6k4 1+k 2 M + W2
s, p cis 2 cip 2

S'.3. 1.3 Summary: Angular Motion Test Observables

Table 3.1-5 identifies the gyro parameter groups which may be

determined as a result of each type of testing considered. A sequence of

constant rate tests is capable of determining all groups except the so-called

,i" terms" (k 1 , k2 , k 3 , k 1 3 and k 1 4 ), which are associated with angular

acceleration. A sequence of sinusoidal averaging tests is useful only in

determining the "y terms" (k7, k8, k9, k10 and kll). A sequence of sinus-

oidal harmonic tests is capable of determining the full set of parameter

groups, as previously discussed. Thus, a combination of constant rate
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TABLE 3.1-5

DETERMINABLE GYRO PARAMETER GROUPS:
ANGULAR MOTION TESTING

Sinusoidal Testing,
Harmonic Extraction

Sinusoldal S1 = XW C1 
= W

Constant Rate Testing,
Testing Averaging

a-M =XW W2pW3 W2 CW2 -
ac = w W2

S3 PW 3  C3=

S terms

k1 , k2, k3 , k13 , k14 * No No Yes

X terms

.: k5, k6  Yes No Yes

-'. terms

k-: k8, k , k10 , k1l Yes Yes Yes

.terms

k1 2 * Yes No Yes

Number of runs required 12, (15) 6 6

*Very small: probably unobservable in practice.

tsts and sinusoidal averaging tests yields no more groups than those found

in constant rate tests alone, but does provide independent measures of the

, or rectification, terms. Similarly, a combination of sinusoidal harmonic

testing with the other types yields no more groups than those found in

harmonic testing alone, but does offer the advantage of independent measure-

ments of X, y and p terms and, therefore, additional cross-checking

opportunities. The relative accuracies of the different testing methods are

compared in Section 3.2.1.
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As illustrated in the numerical examples of Section 3. 5, the

parameter groups kl2 and kl4 are expected to be extremely small. It is,

:-therefore, likely that the cubic terms (pterms) in constant rate testing

and the third harmonic (S3 and C3 ) in sinusoidal testing can be ignored in

':practice. It is also worth noting that both k1 and kll are approximately

equal to Ioig and that both k3 and k9 are approximately equal to Iosg.
Consequently, there may be fewer significant quantities that cannot be

measured during constant rate testing than is suggested by Table 3.1-5.

Table 3.1-5 also shows the number of test runs required in each

sequence. The constant rate tests will probably require two non-zero rates

cfor:each of the six test axes shown in Table 3. 1-2 in order to separate the
LX:and y terms, making a total of 12 runs. Theoretically, a third rate is

;required for the three test axes where a cubic (p) term appears, making a

-total of 15 required runs. In practice the cubic terms will probably be

-ignored. The number of runs listed in Table 3.1-5 under constant rate

itesting is 24, rather than 12, because each set may be repeated with the

sensor re-mounted after a rotation of 180 degrees about the test axis. This

would be done in order to correct for a misalignment of the table axis.

Sinusoidal testing entails only one run for each of the six test

axes, making a total of six required runs. In practice, for sinusoidal

harmonic testing each test will probably be repeated with the sensor re-

mounted, as described above. Therefore, the number of required runs is

stated as 12. The number 6 is maintained for sinusoidal averaging since

table axis misalignment does not cause a constant error torque.
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Under the assumptions of our error models (all parameter

groups independent of test motion, etc.) no new information is gained by

running a sinusoidal test at varying frequencies or amplitudes. In

practice, of course, it would be desirable to vary these test motion quan-

tities in order to check the consistency of the results and to see if and

where the error model breaks down.

3.2 SINGLE-AXIS TEST ACCURACY

Procedures which involve sequences of single-axis tests were

outlined in the previous section. The objective of these test sequences is

to obtain measurements of a set of basic parameter groups which cause

motion-induced error torques. The measurements cannot be perfect for a

number of reasons. The sources of test errors are analyzed in this sec-

tion and relationships between error sources and test accuracy are

developed.

3.2.1 Overview and Comparison

Test error categories are listed in Table 3.2-1 and discussed

briefly below. More detailed discussions are given in following sections.

It should be noted that "measurement errors" are associated with the tor-

que rebalance path of the gyro itself, which is used to determine the nature

of the applied torque time history. "Motion errors" are associated with

imperfections in the motion supplying devices.

Table 3.2-1 indicates which tests are significantly affected by

various types of test error. A zero entry in the table implies that the

source in question is expected to contribute negligibly small errors to
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TABLE 3.2-1

TEST ERROR INFLUENCES

Constant Sinusoidal
Sinusoidal

Test Error Categories Rate Harmonic
Testing Averaging Testing

Test Motion Errors

Magnitude

1. Bias 0 Y7 , X,

2. Waveform Distortion NA* 0 A,y

3. High-Frequency Noise 0 ) y,,

Misalignment

4. Bias-Fixed X 0 X1

5. Run-to-Run Shift X,y NA NA

6. Table Wobble X, y 0

Measurement Errors

7. Quantization X,y 9 A, X, 

8. Torquer Scale Factor Error X,y y, X, y

9. Torquer Nonlinearity X,y y , X, y

10. High-Frequency Noise X,y y , X,

Parameter Changes

11. Run-to-Run Shifts X,y NA NA

NA = Not Applicable.
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estimates qf the parameters in question. An "NA" entry stands for "not

applicable." For example, distortion of the applied test motion waveform

is not a problem for constant rate tests. A Greek letter or letters

appearing at a particular location in the table indicates which types of

coefficients will suffer significant estimation errors due to the error

source in question. The following paragraphs provide brief discussions of

various test error source categories and references to detailed treat-

ments in succeeding sections.

Test motion bias errors are constant errors in the knowledge of

the applied test motion amplitude or of the orientation of the test axis.

Test motion bias errors change the values of the observable quantities

being measured. Since calculation of sensor parameters is based on

assumed test motions which are different, they are in some error. These

effects are discussed in detail in Section 3.2.2 and Appendix B. The

error in the knowledge of test motion amplitude, in constant rate testing,

is expected to be negligibly small because table rate is determined from a

measurement of the total time required for an integral number of test

table revolutions; this can be done very accurately. The effect of a fixed

test axis misalignment error on the jI and y terms during sinusoidal

testing is negligible, as shown in Section 3.2.2. A shift in the misalign-

ment error between two constant rate tests, for a given test axis orientation,

affects both the X and y estimates, as shown in Section 3.2.2.

Cyclically repeating test motion errors, such as table wobble or

distortion of the applied sinusoidal motion, give rise to harmonics in the

applied torque time history. In constant rate testing the table-wobble

effects may rectify and change the average torque measurement. These

errors are discussed in Section 3.2.3. Other examples of cyclic test

motion errors are linear vibrations occurring during angular vibration
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tests (due to an off-center test axis) and angular vibrations occurring

during linear vibration tests (due to unwanted "rocking" motion).. The

.former might be significant when subjecting an accelerometer to angular

vibration testing; the latter will be very significant when subjecting a gyro

to linear vibration testing.

Errors due to quantization can arise in testing analog-rebalanced

sensors as well as pulse-rebalanced sensors. In the first case this will

happen whenever the continuously varying torquer input signal is converted

-into digital form for data processing. As with a pulse-rebalanced sensor,

the test data becomes a sequence of integers (pulse counts) which represent

the integral of torque over particular time intervals. One count represents

the basic quantization interval or data resolution level in units of torque-

times-time (e. g. dyne cm sec). All parameter estimates are affected by

'this quantization. This problem is discussed in detail in Section 3.2.4.

Random high-frequency fluctuations in the applied test motion can

,be viewed as "process noise" affecting the entire test procedure. This

-,together with similar fluctuations in measurement errors or "measurement

noise" places a limit on the achievable parameter estimation accuracies.

(In some cases the quantization process is effectively a contributor to mea-

Isurement noise. Besides that contribution there is the difference between

-the actual physical torque generated (or its integral over an interval) and

its indicated value. All Fourier coefficient estimates are affected by these

errors. They are discussed in Section 3.2.5 and Appendix C. In the case

:of constant rate testing, while the applied rate may fluctuate about its

,average value, the average will be known with negligible error, as dis-

cussed above. The first order effect on the estimated parameters will

also be negligible since the integrated effect of positive deviations will

exactly counteract the integrated effect of negative deviations.
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Cyclically repeating measurement errors are the result of fixed

rebalance loop errors such as torquer nonlinearity or torquer scale-factor

error. The "odd-nonlinearities" affect constant rate testing and the

measurement of the W terms in sinusoidal harmonic testing. The "even

nonlinearities" affect sinusoidal averaging and the measurement of the X

and y terms in sinusoidal harmonic testing. These effects are discussed

in Section 3.2.6.

The shift in sensor parameter values between two constant rate

tests with a given test axis orientation affects both the X and y estimates,

in much the same way as a shifted misalignment error affects them. These

effects are discussed in Section 3. 2. 7.

Table 3.2-2 repeats the format of Table 3.2-1, but supplies

more detail in the form of error formulas. These formulas express the

errors in estimating the W, X and y terms as functions of the error sources,

the test motion quantities, the sensor parameters and the test time. For a

given test motion axis X and y are defined as the coefficients of the W and

W 2 terms, respectively, in the appropriate row of Table 3.1-4. Similarly,

i isdefined as the coefficient of the appropriate wW or cW 2 term in the

C l or S2 column of Table 3. 1-1. (In some cases alternate expressions,

for 6 (C 1 ) and 6L(S2 ), are required. ) Some errors are functions of the

parameters (M, X, y) themselves; for example, those due to test motion

magnitude error (6W) and torquer scale factor error (Esc). Most of the

errors are functions of the test motion quantities (W1 and W2 for constant

rate tests, W and w for sinusoidal tests). Some errors are functions of the

direction cosines (ci and co) relating the test axis to the sensor axes; for

example, those due to distortion (A), table wobble (EW) and torquer

nonlinearity (ENL).
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TABLE 3.2-2

ERROR ANALYSIS SUMMARY

Constant Rate Tests Sinusoidal Averaging Sinusoldal Harmonics

Error Source (WI >' w) c -C*ww, s xw, c, -2 w

Me-Me - W.W2 S2 rW

1. Magnitude Bias 565(C) -* 6W; s)" 2w W

6W negligible 6W 68 86W

6y,. w y - 2 6W

r 2. Distortion ex = o
A not applicable 2

6y=0 61 CHA; YI= Coo wA

3. Magnitude Noise L a 2
(combined effect (c1) w v

with measure- w negligible effect - " 20 -
ment noise, a v

4. Misalignment Bias - 6-a o

6y=0 y0 68 =0

5. Misalignment 6) =- J- H 'SH
7.. Run-to-Run shift '

SH  n applltable not applicable

S;If SH

, 6. Table Wobble c = o; 6ps1) " a H'w

4W )x 
= 

- c H 
eW zero average effect 6X 0

6' 1 tA _TH_ 87= 0 /
6Vv

1. Quantization Ac ,WJ/ X

y WIW2JT T T TT

8. Torquer Scale
.Factor Error sc 8 sc 'sc

6 * y SC 'y y SC sc = 
7 SC

: 8(I oo o
)

2 3
9. Torquer -() , w (loco W 2,

Nonlinearity

8 8(Ho)2 W 
3 

(HCl)3 W22  _I3 2M2 2 2+

(l61 2+ 3 M1) 6v4 (H lC c0  8
I

10. Measurement -, , , T
Noise PCo a o

a I

9 7 Fp , jeh .Tfl

11. Parameter Shifts, MSs
Run-to-Run 6 S.'W 2Y s w

--
SH S,' McSH 2 not applicable not applicable

Reproduced from
best available copy. 62
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The errors due to quantization and measurement noise are

functions of test time, T. Note that the errors due to quantization decline

faster (as 1/T) for constant rate testing and sinusoidal averaging than for

sinusoidal harmonic testing (as 1/Ai). The quantization error formulas

given in Table 3.2-2 are valid only for the analog rebalanced case. The

other formulas apply to both cases, but the Table as a whole cannot be

considered a complete error summary for the pulse rebalanced case.

The effects of measurement noise are actually taken into account

twice in Table 3. 2-2, in the third and tenth rows. The third row formulas

show the combined effect of process noise and measurement noise,

assuming that the test has run long enough for a state of equilibrium to

have been reached. The tenth row formulas show the transient effect of

measurement noise alone, assuming that the equilibrium state has not yet

been reached. In performing a numerical error analysis, for a given test

time, etc., both sets of formulas should be computed and the larger result

used.

The constant rate test error formulas are influenced by the fact

that the X and y terms must be separated by making two test runs at well-

separated test rate magnitudes (W1 and W2 ). The direct result of each run

is a measurement of the excess torque above that which exists in the

absence of the applied motion. Thus, we have the two equations

M = M M = XW 1 +yW (3.2-1)

M = M2 M c = XW +fW2 (3.2-2)
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which are linear in X and y. Solving Eqs. (3. 2-1) and (3. 2-2):

W W
M M

W 2W 1
= 2  (3.2-3)

W 1 - W

1 1

6X 2 1W (3.2-5)

W 1 - W 2

~WIf we takeM2 W 1 and make it considerably larger

than W2 , we can write approximate expressions for 6o and 6y:

6) 6M 6M (3.2-5)

WW

1 1W M1 8M2

by = M1  (3.2-6)

64

7 WW 2 6M 1 - 5M (3.2-8)
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In the cases where the two measurement errors are expected to be roughly

the same size, we can make the further approximation:

-1
6X - 1 M 2  (3. 2-9)

-y WW2 6M 2  (3.2-10)
W1W2

Note that various pairs of formulas for X and y errors in Table 3.2-2

occur in the same ratio as Eqs. (3.2-9) and (3.2-10).

Table 3.2-3 summarizes a comparison of the various single-

axis test methods and meaningful combinations. The first four rows

review information already given in Table 3.1-5 and discussed in

Section 3.1.3. The last two rows summarize points of significant dif-

ference between testing methods shown in the error formulas given in

Table 3.2-2.

The major advantages of constant rate testing are:

* The data processing function is simply to count the
total number of pulses occurring during each test
run and, subsequently, to solve some linear
algebraic equations.

* The average applied test rate should be very
accurately known since it is given by an integral
number of revolutions divided by the total test time.
The estimation errors due to both bias (6W) and
random fluctuations (ow) should both be negligible
as a result. This is an advantage in determining
both X and y terms.
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TABLE 3.2-3

SUMMARY COMPARISON OF SINGLE-AXIS TEST METHODS

Constant Rate

Constant Rate Sinusoidal Averaging
Cofistant Rate Sinusoidal Averaging + Sinusoidal Averaging

Sinusoidal Averaging Sinusoidal Harmonics SinusoidalSinusoidal Harmonics

Completeness in
Finding Sensor X and y terms y terms only I and y terms all terms (, A,y) all terms (p, ,y)
Parameters

Number of 24 30 12 42
Runs Required

Redundant Data,
.Cross-checking Very Little None Some (y terms) Much ( and y terms) Most O( and l terms)

-Opportunities

Data Processing Simple Simple Simple More Difficult More Difficult

Difficulty (Pulse Count) (Pulse Count) (Pulse Count) (Extract Harmonics) (Extract Harmonics)

Quantization 1 1
Effect Decreases 1 1 1 (y terms) , (X,yterms)

: (,1, terms) (,,yterms) (p,A,y terms)

Estimation Negligible 6W No effects due to Free to choose best No effects due to -SH' Free to choose best

Accuracy and oW(Y) 7SH, SH' SH' McSH() of two methods of all methods

Advantages (y terms) SH' SH' McSH ,terms) ( terms)

No A ($ Negligible A effect Negligible (W effects
Negligible (W effect (, yterms)

* Distortion (A) of the waveform of the applied rate is
not a problem.

* Errors due to quantization decrease with 1/T rather
than 1/IT as in sinusoidal harmonic testing. This
is an accuracy advantage in estimating the X terms.

The major advantages of sinusoidal testing are:

* All parameter groups can be found, including the
p terms.

* It is not necessary to make multiple runs for each
test axis in order to separate the X and y terms.
This results in fewer total runs and avoids extra
errors due to run-to-run shifts in test axis mis-
alignments (ESH) and parameters (XSH, YSH, MCSH).
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* There is no average effect of a test axis wobble

(cW) and the effects on most harmonic terms are
small. This is an accuracy advantage in estimating
the X and y terms.

* There is more redundant information in the array
of observable quantities extracted from the test sequence

and, therefore, more chances for cross-checking results.

Of course by paying the price in time and effort required to perform both

types of testing we can achieve the advantages of both, as well as additional

cross-checking opportunities.

(Note: the remainder of Section 3.2 explains the origin of the

error formulas presented in Table 3.2-2. Those readers not concerned

With derivation details may wish to skip directly to Section 3. 3. Those

interested primarily in quantitative results may wish to skip directly to

thenumerical examples given in Section 3. 5.)

3.2.2 Bias Test Motion Errors

This section summarizes the effects of bias test motion errors

on the values of gyro parameters derived from the test results. The test

motion errors considered are errors in the knowledge of amplitude and

frequency of the applied motions an Tmisalignment of the test motion axes.

A complete set of sinusoidal tests involves the six cases sum-

marized in Table 3. 1-1. The data from each test is processed to yield

seven Fourier coefficients. From the set of 42 coefficients, the values of

14 basic parameter groups are calculated and from the 14 groups the

values of certain individual parameters can be computed. Appendix B

presents a complete and detailed error analysis showing the effects of bias
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test motion errors on all 42 coefficient values. The 42 coefficients

contain much redundant information and many of them will be of relatively

little interest except in providing verification of results obtained from a

particular subset (discussed below). In practice all 42 values could be

used as inputs to a regression analysis in order to make optimal use of all

available data. For purposes of producing a straightforward look at the

effects on the estimates of individual parameters, however, we will con-

sider only the direct effect of test motion errors on particular Fourier

coefficients and the subsequent effects on the particular A, X, y or p term

associated with each coefficient. In many cases one of these coefficients

is directly proportional to one basic parameter group which in turn is

equal or approximately equal to one individual parameter. Therefore, in

most cases a one percent error in the computed Fourier coefficient results

in a one percent error in the corresponding parameter or parameter group.

For example, for the test which employs angular vibration about the output

axis, the coefficients S 1 , C1 and C2 lead directly to the parameter groups

k5, k2 and k., respectively. Errors in amplitude, 8W, and frequency,

8w, lead to errors in the coefficients as follows:

6 1 = (k 5 ) 8W

8C 1 = (k2 w) 6W + (k2W) 6w

6C2 = -(k 8 W) 6W (3.2-11)
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Since we have:

S1
ks5 W

C 1

C 2

k C2  - (3. 2-11a)

it follows that:

1
86k - S5 W 1

8W 8w
= (k5) W + (o)

1

8W 8W
o. = (k2) -W + (k2 )

26k 8  -W 2 8C 2

= -2k 8 W + (o) (3.2-11b)
8W69
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In general we can write:

( ) = )W+ E E H (3.2-12)
6( ) =  W ( )

where the parenthesized term can be any ji, X, y or p and the EW, E

and E are normalized error coefficients. Inspection of the results

presented in Appendix B leads to the values tabulated in Table 3.2-4 for

these quantities. The Ew values show that a 1% error in the amplitude of

the applied test vibration results in an error in the estimatedparameter

group of 1, 2, or 3%. The entries in the E column show that a given

percentile frequency error has a 1-to-1 effect on p terms and no influence

on other terms. Most entries in the misalignment error coefficient column,

E, are "negligible. " The expression in the X row of the right-hand column

is a function of ci , the direction cosine between the test axis and the gyro

input axis; E- varies between zero when c. = 1 and unity when ci = 0. The
C 1 1

.latter is true when the test axis is the output or spin axis. The fact that

E- = 1 in these two cases represents the fact that a one sec misalignment

of the test motion axis results in a one sec error in the derived measures

of as and Ao .

The test motion magnitude bias error formulas given in Table

3. 2-2 represent the fact that Ew is unity for all X terms and two for all

y terms, etc. The bias misalignment formulas represent the fact that the

only significant effect of a test axis misalignment occurs when the angular

momentum H is given an undesired component along the test axis. The

torque measurement error is, then:

6M = - - c. HW T (3.2-12a)
1
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TABLE 3.2-4

NORMALIZED ERROR COEFFICIENTS:
BIAS TEST MOTION ERRORS

( ) E w  E EC

C1 1 1 negligible

SS2 2 1 negligible

X 1 0 1 - c2
1

y 2 0 negligible

p 3 0 negligible

This error effects only the estimation of X terms (misalignments) in

sinusoidal testing. Therefore:

1 2
X ), -W M = - 1- c H (3. 2-12b)

In constant rate testing the torque measurement errors due to

a bias misalignment (Z) and a run-to-run shift (A?) are:

6M - HW1 (3.2-13)
1 1 1

8M 2 = - 1c' HW 2 ( + A) (3.2-14)
1
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Substituting Eqs. (3.2-13) and (3. 2-14) into Eqs. (3. 2-5) and (3. 2-6) yields:

6X = -1- c2H( +A ) (3.2-15)
CF1 - C ( + A?)(

S= - 1- A (3.2-16)
W1

Equations (3.2-11), (3.2-15) and (3.2-16) are the basis for the error

formulas appearing in the fourth and fifth rows of Table 3. 2-2.

-------- 3.2.3 Cyclic Test Motion Errors

This section treats the effects of imperfections in the motion

supplying devices which cause cyclically repeating test motion errors.

These effects may be studied by considering a single test motion cycle.

There is no advantage to be gained by averaging data taken over many

cycles since the resulting error torques also repeat in each cycle.

Table 3.2-5, which repeats the expressions given in Table 3. 1-1, indicates

which observable quantities will be affected by various types of cyclic

errors.

Distortion of the nominally sinusoidal shape of the applied test

motion will seriously affect the harmonic terms (S2 , C2 , S3 and C3 ) in

cases where there is a very large input torque, Hwi, at the fundamental

test motion frequency. This occurs when the test axis has a component

along the gyro input axis (c i = 1 or 1/J2). Exaggerated examples of dis-

torted shapes are pictured in Fig. 3.2-1 with the corresponding errors in

Fourier coefficients [E(S 2 ), E(C 2 ), etc.]. The affected observable
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TABLE 3.2-5

SIGNIFICANT CYCLIC ERRORS

0 MW- kW k k3 W kW 0 03  k Wkl W2Wk 1 2 I

1 1 Me + W2 W + kk 1 1w 0 k 012

/s 0 Mes + k W2  k+W Wk6  k W 0 k + 0 0k
os 4 12W3

4 W l IW3  +k11 WW2

1 4ikkW 
7; (k 23W 

1

o 1 Mcio k +k ( k2  +5 6- k 2 
3  . kl4

+ 8. k 3  W /24 +k)W

/s M + 1k " 4+k6 1c 4 1 - 8
2 4W

)is W2 __L k k•k

j.- M + 4 orquer nonlinearity (k table wobble - distortion

quantities are indicated by the symbol in Table 3.2-5. These quan-

tities will be difficult to measure in the presence of even small distortions

of the applied motion. The bias term, B, and the fundamental cosine term,

C1 , should be unaffected for the following reasons. The average test

angular rate must remain zero or the test table angle would drift away from

its zero reference position. A fundamental cosine term error, E(C1),
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S-260

wj= c W(sin wt A sin 2wt) , ciW(sin wt +Acos 2wt)

E(S)cHWA E(C2)= cHWA

I /

/ /

:2 c iW(sinwt+Asin 3wt) wi=ciW(sinwt+Acos 3wt)

E(S3)= cHWA E(C 3)= c jHWA

/

Figure 3.2-1 Distorted Test Motion Sinusoids

-would be equivalent to an error in the knowledge of the test motion phase

'.angle, but the phase of the test motion should be known extremely well

-based on zero-crossings of the table reference position. An error in S1
is quite possible, but this is completely equivalent to a bias error in the

test motion amplitude, W, treated in the previous section.
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The first error formula for 6y in the second row of Table 3.2-2

is obtained by combining the E(C 2 ) expression in Fig. 3.2-1 with the

relation:

y = 6C 2  (3.2-17)

The second error formula is obtained by noting that the dominant applied

torque in some tests is the output axis inertia term, c I wW cos wt.
0 00

A table wobble or oscillation of the test axis about a cross axis

can significantly affect the term S2 in five of the six tests outlined in

Table 3.2-5. These are indicated by the symbol . It can also affect

the torque measurement during constant rate testing due to the unwanted

constant angular rate components associated with the resulting conical

motion of the test axis. These effects may be significant whenever the

cross axis about which the wobbling takes place is coincident with the gyro

input axis, or whenever the direction cosine between the two is large. The

aiiklar rate about the input axis includes an undesired (and unknown) com-

poient, 6wi, which is proportional to this direction cosine. Since the

magnitude of the expected wobbling is of the order of some seconds of are,

the undesired component is extremely small compared to the nominal test

angular rate. However, when the motion has a component in the direction

of the gyro input axis, the resulting error torque, H6wi, can be significant

in comparison with other torques associated with the desired test motion.

Undesired components of w and ws, due to the wobbling motion, will also

cause unwanted torques, but these will be negligibly small since they are

small fractions of terms which are small nominally.
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Figure 3.2-2 pictures three Euler angles (, p8,) relating a set

of base axes (X, Y, Z) to a set of table axes (x, y, z). Nominally x

remains coincident with X and the table motion is represented by the

angular rate, , which is oscillatory in sinusoidal testing and steady in

constant rate testing. That is:

d = W sin wt

sinusoidal tests (3. 2-18a)

c - cos wt

constant rate tests (3. 2-18b)
cP = Wt

Table wobble is represented by oscillatory small-angle histories for b

and 8.

The angular rates of the table can be expressed, in table

coordinates, in terms of the Euler angle rates by the following standard

set of equations:

2x =x  4- sin 8

y = 8 cos + ~ cos 6 sin p (3.2-19)

wz = 6sin c + cos e cos
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R-822

//

/

: NOMINAL ACTUAL TEST AXIS
TEST e x
AXIS X

" ,,e ore small angles

, is nominal test motion

Figure 3.2-2 Euler Angles Relating Base
Axes- to Table Axes

(See, for example, Ref. 6, p.475.) Since the gyro is rigidly attached to

the table, these equations also represent the gyro case angular rates in

some case-fixed coordinate frame. Based on small angle assumptions

(cos 8 ~ cos i ~ 1, etc.) and the elimination of higher order terms we can

write the following expressions.

For low frequency sinusoidal testing:

wx W sin cwt

W y (3.2-19a)
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For constant rate testing:

SW

w E cos Wt +4 sin Wt (3.2-19b)

- z- - sin Wt + 4 cos Wt

In sinusoidal testing the expected form of table wobbling is a

second harmonic oscillation of the test axis due to an offset center of mass

of the table and equipment mounted on it. An offset in the y direction (dy),

-for example, causes a double frequency acceleration (dy W sin wt), which

acauses a bearing torque and angular displacement about the z axis. The

,magnitude of the displacement depends upon the table unbalance and

geometry and the bearing stiffness, but its time history should closely

follow the forcing acceleration for low frequency test motions. Therefore:

0(t) 1 sin2 wt

= 2 (1 - cos 2wt) (3. 2-20a)

= vg - E cos 2wt

where E is the amplitude of the wobble. Differentiating, we obtain:

- 2@ sin 2 wt (3. 2-21a)

S~ 2w c sin 2wt

78



THE ANALYTIC SCIENCES CORPORATION

(The 6 equation corresponds to a z axis center of mass offset.) Consideration

of Eqs. (3. 2-21a) and (3. 2-19a) shows that there will be a second harmonic

oscillation about some axis in the y - z plane. The resulting error torque

depends on the extent to which the gyro input axis coincides with this axis.

Assuming a worst-case situation (the wobble axis coincides with the gyro

input axis when ci = 0, or with the projection of the gyro input axis onto

the y-z plane when ci = 1/I2) the appropriate error formula is:

E(S 2 ) = 2 W 1- c. HW (3. 2-22a)
.1

where c. is the direction cosine between the gyro input axis and the test
1

axis and cW represents the combined effect of e and E . The other Fourier

coefficients, B, S 1 , C1 and C2 , are unaffected. Therefore, the W, X and

y terms are all unaffected, except for the p term, kl 3 , which is associated

with S2 in the "o/s" test. In this case:

2 2

WW

= 2 H -ci C (3.2-23)

In constant rate testing the expected form of wobble is a conical

motion of the test axis, again caused by the net mass unbalance about the

axis of rotation. In this case the Euler angles, 0and 8, oscillate at the
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test motion frequency, W, with 0 leading p by i/2 radians when the

direction of table rotation, p, is as shown in Fig. 3.2-2. Therefore:

: = 1 I sin Wt + c2 cos Wt

(3.2-20b)

8 = 0 1 cos Wt - C2 sin Wt

cifferentiation of Eq. (3. 2-20b) and substitution into Eq. (3.2-19b) leads

:to expressions for wy and wz which contain constant and double frequency

terms. The latter cancel, leaving:

oy 2
(3. 2-21b)

The result is an undesired constant rate about some axis in the y - z plane,

-leading to the worst-case error torque formula:

M = -WH c- i[W (3.2-22b)

:Combination of Eq. (3.2-22b) with Eqs. (3.2-7) and (3.2-8) yields the

error formulas for 6X and 6y given in Table 3.2-2.
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3.2.4 Errors Due to Quantization

When pulse rebalanced sensors are tested, the test data is a

sequence of integers which represent the integral of torque over particular

time intervals. The same is true in testing analog rebalanced sensors in

cases where the torque command signal is integrated and quantized to

provide an output pulse sequence. In constant rate testing and sinusoidal

average testing the data is simply the total pulse count which, when divided

by total test time, represents the average torque level over the duration

of the test. In sinusoidal harmonic testing the test time, T, is usually

divided into a sequence of equally spaced intervals of length, h. In the

limiting case for pulse rebalanced sensors h is a single pulse width,

making the test data a sequence of binary or ternary numbers representing

the time history of the rebalance torque. However, h can also be chosen

as any integral number of pulse widths.

Consider first the case of an analog rebalanced gyro where the

outputs appear at varying intervals, not generally occurring exactly at the

beginning and end of the counting intervals. The example time-line of

Fig. 3.2-3 shows a case where p pulses are counted within the interval

(ti, ti+h). The error due to quantization depends on the quantities, xi and

xi+1 . The error in measuring the integrated torque over the interval is:

e q i+1) (3.2-24)
i i+l

where q is the weight of a single pulse or count (measured in dyne cm sec).

If we assume xi and xi+1 to be independent random variables uniformly dis-

tributed over the spacing intervals, ~i and Yi+l' in which they occur, then

the joint distribution of the normalized quantities, xi/ i and xi/ i+l, will be

as shown at the left side of Fig. 3.2-4; the resulting density function, p(e),
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R-806

X X +

1 2 3 p-1 P

t ti +h

Figure 3.2-3 Pulse Sequence

R -33

JOINT DISTRIBUTION ERROR DISTRIBUTION

pP x( xi Kl ex i
e--q q

ez-0.5q

:0 0 p(e)

005q
e:q q p(e):( Le-

q q

Xi

Figure 3.2-4 Distribution of Error Due to Quantization

Reproduced from
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for the error is illustrated at the right. It has zero mean and

variance:

2= 2 de1)
a - e p(e) de = 2 0 de

-q o

1 2 (3.2-25)

Therefore:

a = (3.2-26)
e JF

The resulting error in measuring the average torque during a constant

rate or sinusoidal test is:

e _ q (3.2-27)
'M T

In sinusoidal harmonic testing, the objective is to estimate the

observable quantities, S l , C1, S2 and C2 , after removing the average

value, B, from the time varying torque. Thus:

M(t) - B = S 1 sin wt + C 1 cos wt + S2 sin 2wt + C2 cos 2wt (3.2-28)
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Each integer measurement is given by:

hi

z. = [M(t)- B] dt
h(i-1)

1 -cos wh.+cos wh(i-1) + - sin w h.-sin wh(i-1)

S C
+2 - cos 2wh +cos 2wh(i-1) +C [sin 2whi -sin2wh(i-1)
2w - i  2w

(3. 2-29)

Defining a state vector of quantities to be estimated as:

S1

C 1

x = (3. 2-30)
- S2

and a j-dimensional vector, z, of measurements, taken over an interval

T = hj, we can form the least-squares estimate, x, as follows:

x = (HTH) H z (3.2-31)
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where H is the j x 4 measurement matrix:

f1 g1  P1 q1

f2 g2  P2 q2

H 1 (3.2-32)

f. g Pj j

*here:

f. = - cos whi + cos wh(i-1) (3.2-33)
1

etc. (see Eq. (3.2-29)). Therefore:

Efi Efigr  Efipi  fiqi
11

Sgf 2 gi

S Epi Pigi i Pi pi

Eqifi qigi Eqii iq
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Summing over a full cycle of N points (N = 2v/wh), we find:

N/2 0 0 0

HTH = 1 0 N/2 0 0 (3.2-34a)

o2 0 0 N/2 0

0 0 0 N/2

Similarly, over an integral number (M) of cycles of N points each:

MN/2 0 0 0 T/2h 0 0 0

T 1 0 MN/2 0 0 _ 1 0 T/2h 0 0

2 0 0 MN/2 0 W 0 0 T/2h 0
SeeC:. -

0 0 0 MN/2 0 0 0 T/2h

(3. 2-35)

Therefore:

2h/T 0 0 0

(T-1 2 0 2h/T 0 0
(HTH) w (3.2-36)

0 0 2h/T 0

0 0 0 2h/T

For a sequence of independent measurement errors of variance q2/6

[Eq. (3.2-26)], the estimation error covariance can be shown to be:

(x - x)( - ) (HTH) (3.2-37)
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Therefore:

S1 = 1 = S 2 = (3.2-38)

The error formulas in the seventh row of Table 3.2-2 are based on

Eqs. (3.2-27), (3.2-38), (3.2-9) and (3.2-10).

For pulse rebalanced sensors the type of quantization error

discussed above does not exist because the counting intervals will always

be chosen as an integral number of pulse widths. There will be other

errors, perhaps larger, associated with the dynamics of the nonlinear

feedback loop, which can cause wide float angle excursions, limit-cycling

behavior, etc. Because of these things the feedback torque may not be a

good replica of the applied torque history, especially over short measure-

ment intervals. Parts of the above analysis will apply to this case, but

it is a basically more complicated problem which will be treated in future

work.

3.2.5 Random High Frequency Errors

In Appendix C the first stage (see Fig. 3. 1-3, stage Ia) of the

data processing problem is formulated as a problem in linear estimation,

for which the Kalman filter is an optimal solution. The "state variables"

to be estimated for each single-axis test are the seven Fourier coefficients.

That is, the data processing function is to determine sets of Fourier

coefficients, but not by Fourier analysis. This formulation is particularly

useful in illuminating the effects of random high frequency measurement

noise and process noise on the errors in estimating the state variables and

on the test durations required to achieve given levels of accuracy.
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The development of the first half of Appendix C is somewhat

similar to the development of quantization effects for sinusoidal harmonic

testing in the preceeding section, except that a continuous, rather than

discrete, linear estimation formulation is employed. In both cases the

estimation errors due to measurement noise decrease as 1/JT.

Measurement errors are differences between recorded or

-processed measurements (gyro outputs, table angles, etc.) and the actual

quantities they are supposed to represent. In the case at hand the primary

measured quantity is torque produced by the torque generator in the

rebalance loop of a gyro. Measurement noise refers to random changes or

fluctuations in the error in this torque measurement, such that two values

of the error a short interval, T, apart are uncorrelated (or tending so as

7 increases). The definition does not include a bias measurement error,

nor any cyclicly repeating error such as that due to torquer nonlinearity.

Process noise relates to random changes in the state variables (Fourier

,:coefficients) themselves. These can occur because the gyro parameters or

the test motion quantities appearing in the state variable definitions are not

stationary. In cases where table angle measurements are produced by the

test, the errors in these quantities can also be treated as a source of

process noise (see Appendix C).

The development of Appendix C leads to some approximate

formulas which are useful in predicting achievable estimation error variances.

The key parameters are the scalar r and the matrix Q which characterize the

measurement noise and process noise, respectively. The random part of the

measurement error v(t) is assumed to be Gaussian white noise with zero

mean and covariance r6(t-7) where 5 is the Dirac delta function:

v(t) = 0; v(t) V() = r6(t-7) (3.2-39)
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The process noise is a seven-dimensional vector quantity u(t) representing

the rates of change of the seven Fourier coefficients. It is also assumed to

be Gaussian white noise with:

u(t) = 0; u(t) u(7) = Q 6(t-T) (3.2-40)

Choosing realistic values for these quantities requires the kind of know-

ledge expressed in the autocorrelation functions of the random processes

involved. Some useful formulas (See page 147 of Ref. 7 or Ref. 8.) are:

r = 2a 7 (3.2-41)
VV

ii= 2 a 7 (3.2-42)
1

where:

a2 = the measurement noise variance
V

a = the process noise variance of the ith state variable
u.

1

7 = the correlation time of the measurement noise

T = the correlation time of the process noise

The values of the off-diagonal elements of the Q matrix depend on the cor-

relation between changes in the Fourier coefficients. If test motion

variations are the major cause of process noise, the several components

of the noise vector will be highly correlated. That is, the off-diagonal
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elements of the Q matrix will be non-zero and significant. If, on the other

hand, gyro parameter changes are the major cause of process noise, we

would expect very little correlation between the components of u. (These

comments are discussed in some detail in Appendix C.)

Some time after the start of a test the estimation error variance,

a 2 of the it h state variable (Fourier coefficient) reaches an equilibrium

condition, in which the information coming in by virtue of new measure-

ments is balanced by the information being lost due to process noise. A

conservative formula for the final (equilibrium) value is:

2 = 2 r ii (3. 2-43)

The error formulas given in the third row of Table 3.2-2 are based on

Eq. (3. 2-43) and the assumption that process noise is caused by random

fluctuations in the test rate magnitude. Equation (3. 2-43) is plotted

parametrically in Fig. 3. 2-5, along with a companion formula for useful

test duration discussed in Section 3.3. A more accurate formula, including

the effect of correlated process noise components, is:

a2 2 r (3. 2-44)

where i / j. The coefficient c.. is a measure of correlation between the
th th 1J

i and j components of process noise:

c.. = (3.2-45)
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Figure 3.2-5 Final Accuracy and Test Time:
Random Errors
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and the jth component corresponds to the largest or dominant component of

process noise appearing in the test. High correlations between certain

:process noise components, therefore, helps to reduce certain estimation

errors.

Equation (3. 2-44) can be combined with Eqs. (3.2-41) and

(3. 2-42) to yield an expression which is more complicated but which only

contains terms which have a physical interpretation. Thus:

a2 = 2 av au 7V 1u cij (3.2-46)
1 Vu. V U\1

The Kalman filter formulation developed in Appendix C is

potentially significant in two ways. First, it provides the above equations,

along with related equations presented in Section 3.3, which are useful in

,predicting the achievable test accuracy and required test duration.

Second, it provides a set of optimal data processing equations which could

be used for reducing actual test data. A connection between this procedure

and Fourier analysis is also developed in Appendix C. The data processing

alternatives are discussed further in Section 3.4.

3.2.6 Rebalance Loop Errors

A torquer scale factor error is an error in our knowledge of the

linear gain of the rebalance loop. It is usually given as a dimensionless

ratio ((SC = so many parts per million). The error formulas in the eighth

row of Table 3.2-2 simply express the fact that the resulting errors in all

parameter estimates will be equal to their actual values times this ratio.
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Torquer nonlinearity causes significant estimation errors for

both constant rate and sinusoidal testing in the three cases which involve

a large gyroscopic torque, Hwi(when ci = 1 or 1/f2). Noticeable errors

may also occur in sinusoidal testing in the three cases which experience

a sizeable output axis inertia torque, Io w (when c = 1 or 1/J2).

Observable quantities which may experience significant errors due to

these effects are indicated by the symbol in Table 3.2-5.

Figure 3.2-6 shows two types of nonlinear elements acting on

input functions, x(t), and producing output functions, y(t). We consider a

nonlinear function, y(x), which combines the two types shown into one

equation as follows:

y = x+ E1 IxI- 2 IxI x- E3 x3  (3.2-47)

The first term in Eq. (3.2-47) represents the desired, linear character of

the torquer loop. The next term (E1 Ixl) represents a torquer asymmetry

which is an example of an "even-valued" nonlinearity. This type of torquer

characteristic is most likely to be significant in the pulse rebalanced case.

The last two terms (-E2 Ix x and - E3 x 3 ) represents an "odd-valued" non-

linearity. This type is most likely to characterize an analog rebalance

torque loop.

For sinusoidal testing the input function is:

x(t) = A sin wt (3.2-48)
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and the output function, which must also be periodic, can be represented

by the trigonometric series:

y(t) = b + a sin wt+bl cos wt +a 2 sin2wt +b 2 cos 2wt +...

(3.2-49)

Substitution of Eq. (3. 2-48) into Eq. (3. 2-47) and Fourier analysis of the

resulting expression for y(t) yields the Fourier coefficients given in

Table 3.2-6. Thus, the output is equal to the input plus a deviation

function, d(t):

y(t) = A sin wt + d(t) (3. 2-49a)

where:

2c1 8 A 3 2 4 1
d(t) = A - 2 A sin cos 2wt

+ - 2 + A  E3 sin 3t - cos 4t + .'..

(3. 2-49b)

Figure 3.2-7 shows a linear gyro loop in which the deviation

function, d(t), has been added in order to account for the effect of a slightly

nonlinear characteristic in the feedback path. The transfer function

relating the input Ma(t) to the output, er(t) is:

er (s) i (2 s + 1)
r - (3.2-50)

) s s + 1 2s + 1) + K 1
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TABLE 3.2-6

NONLINEARITY EFFECTS ON SINUSOID

x = A sin wt

y = x + l x l - C21x x - c3 x

= bo + a l sin wt +b 1 Cos wt

+ a 2 sin 2wt + b2 cos 2 wt

+...

Nominal ( 1 ct C2 E c2 Effect f3 Effect

2A
b= 0 - -1

8 A2  3 3
a A - --- A 
1 A2 1 2 4  3

b = 0

a2= 0

4A
b2 = 0 3 1

8 A 2  1 A3

3  15 2 4 3

b 3 = 0 -

96



THE ANALYTIC SCIENCES CORPORATION
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Figure 3.2-7 Linear Sensor Loop with
Disturbance Function
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for low frequencies this becomes:

e
r -. (3. 2-51)M
a

and, similarly:

e
r -1 (3.2-52)

Therefore:

er (t) Ma(t) - d(t) (3.2-53)

which simply states that the net torque Mo is kept close to zero by the action

of the loop.
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For a sinusoidal test motion, W sin wt, the first approximation

to the output (neglecting the effect of the deviation function) is

er(t) = Ma(t) HWc. sin wt + I00 wW c cos wt (3.2-55)

and the deviation function is

d(t) = HWci. - c+ 2H 2W c sin wt - cos 2wt+...

1 2 I 1 3)3 1To
2+°c wco 3 2 w2 2 c2 cos wt

oo 03 I 2 4 oo o

+4 cos 2wt + ... (3.2-56)
3w

A better approximation to the output is, [using Eq. (3.2-53)]:

er(t) = - 2 ci. + 2I00 wW cr w I I 0 1
Wc / 3+ HWc. + E + HWci E sin wt

S2 4 J 4n 3

SC 2  0 ooI wW e cos wt

H+ 8 0 O I wW c
+ 00 0 cos 2wt

3 v 1 3 r 1

+ ... (3. 2-57)
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Since the nominal output is HWci sin wt, the expressions in the brackets

in Eq. (3.2-57) represent the errors in the Fourier coefficient estimates,

E(B), E(S 1 ), E(C 1 ) and E(C 2 ), due to torquer nonlinearity.

The error formulas given in the ninth row of Table 3.2-2, for

sinusoidal testing, are obtained by substituting the above expressions

into the following relations:

6 I = - E(C 1 )

sinusoidal

R =1 E(S1)  harmonic
testing

(3.2-58)

2 E(C
2 )

SE (B) sinusoidal
W2 averaging

These formulas can also be used to correct the results of a vibration test

if the torquer nonlinearity is calibrated in advance by means of a series of

constant angular rate tests. In that case the final test errors are

proportional to the error in the knowledge of the nonlinearity, rather than

the nonlinearity itself.

The error formulas for constant rate testing are obtained

by observing that we are operating at two points on the same side

of the nonlinear gain curve. Since W 2 is assumed to be much
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smaller than W1, we take the significant torque measurement error

to be:

2 3
6M 1 = c2M 1 - E3 M 1

= - W2 W- 2  )Wl + Y3W (3. 2-59)

Substitution of Eq. (3.2-59) into Eqs. (3. 2-7) and (3. 2-8) yields the

formulas given in the ninth row of Table 3.2-2 for constant rate testing.

3.2. 7 Errors Due to Parameter Changes

Error formulas showing the effect of run-to-run shifts in

parameter values during constant rate testing are obtained by letting x

and y take on different values during the runs (W1 and W2 ) and using

Eqs. (3.2-3) and (3.2-4) to form estimates, xand . Thus:

=2 =  + XSH (3.2-60)

2 =  1 + SH (3.2-61)

and

(M-M) 1 Wl + y 1W2 (3.2-62)

MaMc = M 2  W2  + 2 W2 2 (3.2-63)
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Therefore:

X2).WI x) WW2

W W1 2

S1 + (W1 )1 1 2 YSH (3.2-64)

and

-W -W1 2

= - (3. 2-65)
1 W I W2 SH 1 - SH

With W 1 >> w2, we can write the approximate formulas:

S6, =  - 1 SH + W2 SH (3. 2-66)

W
S1 2

y = 7- yl W1 SH w SH (3.2-67)
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A shift, McSH, in the constant (zero input rate) torque between

runs has the same effect as a measurement error, 6M 2 . Thus we can use

Eqs. (3.2-9) and (3.2-10) to obtain:

61= MSH (3.2-68)

-1
6y W= 2 McSH (3.2-69)

2

:The error formulas in the last row of Table 3.2-2 are obtained by com-

bining Eqs. (3.2-66) and (3.2-67) with Eqs. (3.2-68) and (3.2-69),

respectively.

'3. 3 TEST DURATION

The determination of an appropriate test time, T, is governed

by the estimation error components which vary with T. These are

primarily the error due to quantization and the error due to measurement

noise (see the seventh and tenth rows of Table 3.2-2). We recall that

errors due to quantization decrease as 1/T for constant rate testing and

sinusoidal averaging, and as 1/T for sinusoidal harmonic testing; errors

due to measurement noise decrease, initially, as 1/,FT in all three cases.

For sinusoidal harmonic testing the quantization effect can be considered

as a component of measurement noise. The measurement noise effect

does not continue to decrease as 1/JfT without limit, but reaches a state

of equilibrium where measurement noise and process noise are in balance

(see the third row of Table 3.2-2).

102



THE ANALYTIC SCIENCES CORPORATION

In general all errors can be grouped into three classes, as

illustrated in Fig. 3.3-1 where a is the one-sigma estimation error cor-

responding to the observable quantity in question. The constant term,

kb, represents the sum of all stationary components, such as the effects

of bias errors, cyclic errors and run-to-run shifts. The curve labeled

kr/T represents the combined effect of measurement noise and process

noise. The curve labeled k /T represents the effect of quantization during

constant rate teqting and sinusoidal averaging; this curve is not present

for sinusoidal harmonic testing. A reasonable.rule for selecting T is to

choose a large enough value so that either:

1) Both kinds of time-dependent esimation errors are

less than the stationary errors.

or:

2) The equilibrium level has been reached for estimation

errors due to measurement-noise/process-noise

and that level exceeds the remaining time-dependent

term (k q/T) as well as the stationary term (kb).

If more than one observable quantity is to be estimated, as in

sinusoidal harmonic testing, the above rule should be applied to each of

them in turn, and the largest resulting value for T used as the test time.
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R-257
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3. 3. 1 Choice of Sample Interval

The effect of the size of the sample interval, h, or number of

samples per cycle, N = 2v/wh, for sinusoidal harmonic testing is sug-

gested by the form of the quantization error formulas derived in Section

3.2.4. The standard deviation of the estimate of each observable quantity

is given by:

M = w L (3.3-1)
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Note that q/J- is the rms error in each sample count and T/h is the

total number of data samples taken. Thus, the estimation error is

directly proportional to the single sample error and inversely propor-

tional to the square root of the number of samples. For a given test time,

T, the error is proportional to the square root of h, indicating that h

should be selected as small as possible in order to minimize errors due

to quantization. On the other hand, in order to ease the data processing

task, h should be selected as large as possible. However, it should not

be selected so large that it is impossible to extract the harmonics of the

signal. For example, if h = T, the total test time, the procedure is

reduced to sinusoidal averaging. In conclusion, the number of samples

per cycle should be at least enough to define the first two or three

harmonics. A larger number (smaller h) than that will decrease the

parameter estimation errors due to quantization but increase the data

processing requirements. In the numerical examples given in Section 3. 5

the values, N = 10 samples per cycle and T = 100 sec., are used. In

those examples the error due to quantization is the largest contributor in

dhly two cases (the estimation of the fterms when the test motion axis is

i?afd:i/s).

a;- 3. 3. 2 Effects of Quantization: Examples

This section presents some illustrative numerical examples

relating the data resolution or quantization level to total test time and

parameter estimation errors. For a given gyro wheel momentum, H,

the quantization level, q(dyne cm sec), can be converted to an equivalent

gyro output quantization level, A@ (sec). Similarly, the errors in

estimating average torque, aM (dyne cm), can be converted to an
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equivalent gyro drift rate, o(deg/hr). The results are presented both

ways assuming an angular momentum: H = 105 gm cm /sec. The

assumed test motions are, for constant rate tests:

W 1 = 0.26 rad/sec (15 deg/sec)

W 2 = 0.017 rad/sec (1 deg/sec)

and, for sinusoidal tests:

W = 0.26 rad/sec (15 deg/sec)

w = 21 rad/sec (1 Hz)

First consider the quantization level:

q = 4.85 dyne cm sec

This is equivalent to a 10 sec rotation about the gyro input axis. Table

3.3-1 presents the results of computations based on the quantization

error formulas (see Table 3.2-2) for several values of test time. For

constant rate and sinusoidal average testing the one-sigma error in the

average torque measurement is:

q1
a M dyne cm (3.3-2)

106



THE.ANALYTIC SCIENCES CORPORATION

TABLE 3.3-1

EXAMPLE ERRORS DUE TO QUANTIZATION

q = 4.85 dyne cm

A8 = q/H = 10 sec per pulse

Sinusoidal
Constant Rate

T M aD Averaging

(sec) (dyne cm) (deg/hr) ax a
(dy cm sec) (dy cm sec 2 ) (dy cm sec 2 )

10 0.198 0.41 11.6 44.7 5.86

100 0.0198 0.041 1.16 4.47 0.586

1000 0.00198 0.0041 0.116 0.447 0.0586

Sinusoidal Harmonic Testing

T aM D a aX a 2
(sec) (dyne cm) (deg/hr) (dy cm sec 2 ) (dy cm sec) (dy cm sec 2 )

. 10 1.76 3.60 1.08 6.77 52.1

100 0.556 1.14 0.70 2.70 16.45

1000 0.176 0.36 0.108 0.677 5.21

10000 0.0556 0.114 0.07 0.27 1.65

The equivalent gyro drift rate is:

a M(57. 3)(3600)
a = H deg/hr. (3.3-3)
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The corresponding parameter estimation errors are:

a - (3.3-4)
x W2M

constant rate tests

1
a aM (3.3-5)

: :-5! 7 _ 1 2 1

S W2 aM sinusoidal averaging tests (3. 3-6)

For sinusoidal harmonic testing the rms errors in the Fourier coefficient

estimates are:

"M = - T (3.3-7)

The values given in the lower part of Table 3. 3-1 are based on the

assumption that 10 samples per second are taken; that is, the sample

interval h is 0. 1 sec. The equivalent di-ift rate is again given by

Eq. (3.3-3). The corresponding parameter estimation errors are:

1
a = WW (3.3-8)

1
X W aM (3.3-9)

2
a 2- aM (3. 3-10)
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Figure 3. 3-2(a) plots aD versus test time for four values of

quantization level, AO. The two middle values (1 seE and 10 sec) are

representative single-pulse quantization levels for pulse rebalanced

sensors. The extreme values (80 sec and 0.04 sec) are representative of

an analog rebalanced case in which a voltage-to-frequency device with a

full scale output rate of 5000 counts/sec is used. The high quantization

level would be necessary for an applied rate about the gyro input axis of

2 rad/sec, which causes a torque of:

M = w H = 2 x 10 dyne cm
1

R -1232

0 .1 - 6) 0."1 -

S 0.01 . G ] /

0.0 O 0.001

0.0001 - "O I

10 00 1000 1 100 0 1 10 100 1000 10000
Test Time,T(sec) Test Time,T(sec)

(a) Constant Rate and Sinusoidal
Average Testing (b) Sinusoidal Harmonic TestingAverage Testing

Figure 3.3-2 Effective Drift Rate Due to Quantization
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Therefore, the device must be scaled to make:

2 x 10
q = 2 0 5 40 dyne cm sec

max 5000

and

q 5
Am -q 2.06 x 10 80 sec

max H

The low quantization level would be possible for a test involving small

torques only, such as an applied rate about the gyro spin axis. If the

maximum torque expected in this case is 100 dyne cm (see example values

in Section 3.5), then the device can be scaled to make Amein - 0.04 sec.

-This points up a possible advantage in analog rebalanced testing, as

Sopposed to pulse rebalanced testing. It may be easier, in the analog case,

ito re-scale the data processing electronic equipment to take good advantage

-of situations involving only low levels of applied output axis torque. By

:such a re-scaling the quantization effect may be reduced, with an

:- attendant possibility of increased torquer nonlinearity effect and signal

rgenerator noise effect.

For sinusoidal harmonic testing the error in the measurement

of drift rate is proportional to the test motion frequency (w) and to the

square root of the sample interval (h). This dependence is shown in

Fig. 3. 3-2(b) where results are plotted for two values of the parameter,

S, for each of the four quantization levels.

110



THE ANALYTIC SCIENCES CORPORATION

3.3.3 Time to Reach Equilibrium

This section treats the question of how long it takes for

estimation errors to reach a state of equilibrium, defined largely by the

relative magnitudes of measurement noise and process noise; by filtering

data taken over many cycles it is possible to reduce the effects of

uncorrelated random errors. The formulation of the first stage of the

data processing problem as one of linear estimation (see Appendix C) is

useful in indicating the length of time over which it makes sense to filter

the data; the state variables to be estimated in each single-axis vibration

test are the seven Fourier coefficients.

Figure 3. 3-3 is a conceptual plot showing how the estimation
2 th

error variance a. of the i state variable might change during the course
2

of a test, assuming the use of optimal filtering. The initial value oi (0) is
i

a measure of the uncertainty regarding the variable prior to the start of

the test. The final value a 2() represents an equilibrium condition that is

reached after sufficient time, in which the information coming in by virtue

of new measurements is balanced by the'information being lost due to

process noise; the final value is independent of the initial value. * The
2

liajor reduction in a. takes place while the curve tends to follow the
1

dashed line labeled "measurement noise only." This dashed line cor-

responds to a hypothetical, optimal filtering situation in which there is no

process noise and the initial uncertainty is infinite. The dashed curve,

therefore, depends on only one parameter, r, which characterizes the

measurement noise. It approaches zero asymptotically; by processing

noisy measurements of..a deterministic quantity the estimation error is

made steadily smaller as time progresses.

This is only true if certain observability conditions are satisfied.
In the problem considered here these conditions are met.
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Figure 3.3-3 Estimation Error Variance Time History

.. A "solution time" or "settling time" t s can be loosely defined

'as the time it takes the estimation error variance to get "close" to its

'final value. The significance of ts is that a test should be allowed to con-

tinue this long in order to get full benefit of the optimal filtering. A use-

'ful measure of t s can be taken as the time at whichthe dashed line crosses

the final value level (see Fig. 3.3-3). This crossing point depends on

measurement noise and process noise, but is independent of initial errors.

It can be found for any assumed set of measurement noise and process

noise statistics by methods developed in Appendix C.



THE ANALYTIC SCIENCES CORPORATION

An approximate formula for the settling time is (see Appendix C):

t = (3.3-11)s

where r and qii characterize measurement noise and process noise,

respectively, as described in Section 3.2.4. Equation (3.3-11) is a com-

panion to Eq. (3. 2-43) which gives the final value of the estimation error.

Both are plotted parametrically in Fig. 3.2-2.

An alternate expression for the settling time, one which con-

siders the effect of correlated process noise components, is:

t 2r 1 (3.3-12)
. t1si- c..

-
ij

where c.. is a measure of correlation between two components of process
S.th

noise, the j component being the one which dominates the problem.

Equation (3.3-12) is a companion to Eq. (3. 2-44). Together they imply

that a high correlation between process noise components sometimes

reduces the final estimation error variance, at the same time increasing

the time needed to reach the more accurate level.
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3.4 TEST DATA PROCESSING

The data processing function, for sinusoidal harmonic testing,

can be defined in terms of the procedure pictured in Fig. 3. 1-3 which

shows three data processing phases: Phase Ia accepts as input the scalar,

periodically time-varying sensor output and generates the set of Fourier

coefficients for each single-axis test; in phase Ib the complete array of

estimated values of the Fourier coefficients for a sequence of six single-

axis tests is processed to yield estimates of a complete set of basic

parameter groups; in phase II the values of individual parameters are

computed.

Phase Ia, in which raw test data is processed, directly influences

the choice of laboratory data processing equipment (see Section 4.2). Three

candidate types of processing algorithms, Fourier analysis, least squares

estimation and Kalman filtering, are considered below. Phase Ib involves

the estimation of the basic parameter groups from an array of redundant

coefficients. As a practical matter this phase may become a very simple

computation based on a subset of "primary" coefficients, as discussed in

Section 3.2.2, leaving the redundant information to be used as a cross-check

on the operation of the test sequence or as a means to indicate the existence

of previously unsuspected error torques. Alternatively, some form of

regression analysis may be used to develop an optimum fit to the entire

array of redundant data. The possible gain from such a procedure has not

been investigated. Phase II, the simple algebraic calculation discussed in

Section 2.4, requires no further study. This section will consider in detail

the form of the equations to be mechanized in order to perform phase Ia via

the three candidate algorithms.
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3.4.1 Fourier Analysis

One obvious way to determine the coefficients of a trigonometric

series is by Fourier analysis. For two reasons the problem at hand may

differ from a classical Fourier analysis problem. These are:

* Because of errors in measurements and test motions

we would like to process many cycles of data rather
than just one.

* It may be necessary to deal with.quantized rather than
continuous data. This will certainly be true for a

pulse-rebalanced sensor since the data comes naturally
in quantized form. It may also be true if data from an
analog-rebalanced sensor is to be processed on a digital
computer.

The following equations are appropriate for computing Fourier

coefficients from a continuous output function er(t), taken over a time

interval corresponding to m test motion cycles, where the test motion

i-rquency is w and the cycle period is T = 21/w:

The rebalance torque is assumed to be the continuous function:

Mtg(t) = Kt e (t) (3.4-1)

The applied torque is given by:

Ma = Mtg B + S sin wt + C Cos Wt

+ S 2 sin 2 t + C2 cos 2wt

+ 3 sin 3 t + C3 cos 3wt (3.4-2)
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The Fourier coefficient estimates are:

mT

B Ktm T  S er(t) dt (3.4-3)

mTmT 0

mT2K T
S - T e (t) sin nwt dt (3.4-4)

0

2 Ktg mT

Cn - mW e (t) cos nwt dt (3.4-5)

o

where n = 1, 2 and 3.

Equations (3.4-3), (3.4-4) and (3.4-5) reduce to the classical Fourier

analysis equations when m is unity. These equations can be mechanized

directly on an analog computer for a sensor which is analog-rebalanced, in

which case er(t) is produced as an analog signal.

For the pulse rebalanced case, two sets of exact equations which

generate the Fourier coefficients corresponding to the square-wave-type

torque generator output are developed in Appendix D. For the binary and

ternary pulse schemes the equations for the sine and cosine coefficients

are:

km-1

S - M. [(1-cos nwh) cos nwhi + sin nwh sin nwhi] (3.4-6)

i=O
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kmi-1
Cn -1 M. [(1-cos nwh) sin nwhi - sin nwh cos nwhi] (3.4-7)

n mni I

i=0

where:

n = 1, 2 and 3

h = pulse width

w = test motion frequency

m = number of cycles processed

k = number of pulse widths per cycle (2T/wh)

and M. defines the torque level of the ith pulse according to:
I

M positive torque level

M. = 0 zero torque level

M negative torque level

The bias Fourier coefficient is proportional to the net pulse count. That is:

km-1

B 1 - M. (3.4-8)
mk 1

i=0
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For the time-modulated pulse torquing scheme the equations for

-the sine and cosine coefficients are:

km-1

S M (2 cos nt. - cos nwh) cos nwhi
n mn\

i=O

+ (2 sin n . - sin nwh) sin nwhi (3.4-9)

km-I
M 2E cos nwi. - cos nwh) sin nwhi

n mnv \ /
i=O

+ (2sin nw Li- sin nwh cos nwhi] (3.4-10)

Ywhere n, m and k are defined as above; M is the absolute value of the torque
th

level; L. is the width of the positive torque pulse in the i interval; each
1

interval has both positive and negative pulses and has the total width, h.

The bias Fourier coefficient is given by:

km-I

B mk 211 - h (3.4-11)

i=O

Since h is very small compared to one test motion period, and since

-L. is less than h, we can employ the following small angle approximations:
1

cos nwh = cos nwe. = 1

sin nwh = nwh (3.4-12)

cos ne=. net.

4
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The equations given above reduce to the following set of unified, approximate

expressions:

km-1

B hM b. (3.4-13)
mT 1 i

i=O

km-1

S 2hM Z b. sin (nwhi) (3.4-14)
n mT 1

i=O

km-1
2hM b. cos (nwhi) (3.4-15)

C 1
G_: n mT

i=O

where we have used T = 2n/ow and the definitions:

b. - sgn (Mi) (binary and ternary) (3.4-16)
1

.- h/2
bi h/2 (pulse-width modulation) (3.4-17)

Note that Eqs. (3.4-13), (3.4-14) and (3.4-15) look like discrete approxi-

mations to Eqs. (3.4-3), (3.4-4) and (3.4-5) for the analog-rebalanced case.

In both cases, the sensor output (the continuous signal, er, or the sequence,

bi) is multiplied by the "weighting" functions (sin nwt or sin nwhi and

cos nwt or cos nwhi) and integrated or summed to produce the desired

Fourier coefficients (Sn and Cn).
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3. 4. 2 Least Squares Estimation

A least squares estimation procedure is outlined in Section 3.2.4.
This procedure applies to the case in which the data is a sequence of integers
(z1 , z2 ,... z), each representing the integral of torque over a specified

interval of time. The least squares estimate of the vector:

S

-1 T
x = (HTH) H z (3.4-19)

where the measurement matrix, H, is:

f1 g1  Pl q1

f2 g2

H 1 (3.4-20)

j j 120
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where:

f. = - cos whi + cos wh(i-1)
1

gi = sin whi - sin wh(i-1)

1 1
Pi cos 2w hi + cos 2wh(i-1)

qi sin 2whi - sin 2oh(i-1) (3.4-21)

Processing data by means of Eq. (3.4-19) is essentially similar

to Fourier analysis, in that we are multiplying a sequence of measurements

by a set of periodically varying weighting functions (the elements of HT) to

obtain estimates of the various harmonic coefficients.

The computation can be simplified in practice if an integral

number (say k) of data intervals, h, occur in one test motion period. In

this case the elements of each column of H are cyclically repeating:

S = i+k -i+2k '

gi = gi+k

etc. (3.4-22)

These sequences of repeating elements multiply the sequence of measure-

ments:

zi, Zi+k, zi+2k, ...
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Therefore, we can add up the raw pulse count data in k sections. For

example, define the k sums:

m-1

Z. -zi+ k (i=1,2,...k) (3.4-23)

1=0

c-where m = j/k, the number of test cycles. Then:

H z = T Z (3.4-24)
km x4 -km k x4 k

-T
where Hkx4 is the single-cycle measurement matrix, which. repeats itself

m times as a partition of HT , as follows:

T  -T : T IT 'T
H H ---- (3.4-25)

I I I

When this simplified procedure is used, the on-line (real-time) data pro-

cessing function involves Eq. (3.4-23) only, generating the k outputs,

Z through Zk .

3.4.3 Kalman Filtering

In Appendix C the phase Ia data processing problem is formulated

as a problem in linear estimation for which the Kalman filter is an optimal

solution. This formulation is a useful analytical device for determining the

effects of random process noise and measurement noise on the test accuracy
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(Section 3. 2-5) and the useful test duration (Section 3. 3). This section

discusses the advisability of using a Kalman filtering algorithm in

processing real test data - the form of the equations to be mechanized and

the advantage there might be in using Kalman filtering in preference to

Fourier analysis.

S. The following Kalman filter equations are appropriate for the

cohtinuous (analog rebalanced) case:

x(t) = K(t) [z(t) - H(t) x(t)] (3.4-26)

K(t) = - P(t) H (t) (3.4-27)
C r

Pt Q - rP(t)H (t) H(t)P(t) (3.4-28)

where is the optimal estimate of the seven-state (five, if third harmonics

are ignored) state vector x composed of the set of Fourier coefficients, z

is the time-varying scalar measurement (the output of the sensor) and K is

the Kalman filter gain matrix which in this case is a 7 x 1 column vector.

H is the measurement matrix (in this case a 1 x 7 row vector) with

periodically time-varying elements:

H(t) = (1, sin wt, cos wt, sin 2wt, cos 2wt, sin 2wt, cos 3wt)

(3.4-29)

and P is the covariance matrix of the estimation error:

P = (x - x) (x- x)T (3.4-30)
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The constant scalar r and the constant matrix Q characterize the

measurement noise and process noise, respectively, as discussed in

Section 3.2-5. For any given test set-up, Eq. (3.4-28) could be integrated

in advance and the result could be substituted into Eq. (3. 4-27) to produce

a gain matrix with time-varying elements. This function could then be used

in real time in Eq. (3.4-26) to process actual test data, z(t). If the actual

test is generated in digital form, an alternate expression, based on the

discrete form of the Kalman filter, may be used.

Appendix C demonstrates that after some time has elapsed from

the start of a test, the Kalman filtering equations above become approxi-

mately equivalent to the Fourier analysis procedure in which successive

cycles of processed data are averaged together. Therefore, the only

obvious difference in the Kalman filter procedure involves the way the data

from the first few cycles are processed. The filter estimates in these early

cycles should be superior because all available information, including prior

estimates, is being used in an optimal way. Since certain sensor parameters

should be known accurately prior to the test this advantage may be quite

significant, especially if the data processing equipment imposes severe

limits on the amount of data which can be handled from a given test.

There is another potential advantage of the Kalman filtering

approach which can be significant if some of the sensor parameters undergo

significant changes during the course of a particular vibration test. The

formulation of the problem can be expanded to take account of such changes

(with, for example, a random-walk model) and the changes can be "tracked"

during the test, with the result that the optimal estimates produced are

significantly more accurate than those generated by Fourier analysis or

simple least squares estimation. It is expected, however, that the
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parameters under consideration will not change fast enough to make this a

strong consideration in choosing a data processing scheme.

In summary, there are two potential advantages of the Kalman

filtering approach - the inclusion of prior estimates and the possibility of

tracking parameter changes, but more study is required before a definite

recommendation concerning its use can be made.

3.5 EXAMPLE CALCULATIONS

This section presents the results of illustrative numerical cal-

culations corresponding to an analog rebalanced single-degree-of-freedom

gyro undergoing angular motion tests. The six recommended test motion

axes and all three types of testing are included. The calculations include

test errors, typical torque levels, and the variation of torque levels with

test motion quantities. The test errors are based on the formulas developed

in Section 3.2. The error calculations provide a quantitative accuracy

comparison of the three types of single axis testing, augmenting the dis-

cussion at the end of Section 3.2. 1.

3.5.1 Torque Levels

Table 3. 5-1 lists the values of the parameter groups used in the

example calculations. Table 3. 5-2 lists the g4 X and yterms corresponding

to the given gyro parameters, the assumed test motion quantities W and

w (the same amplitude and frequency are used for all six test axes), and the

.torque amplitudes (M M and M ) which occur during sinusoidal testing.

Note that Mx is the same as the value, XW, corresponding to a constant rate
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TABLE 3.5-1

ASSUMED GYRO PARAMETER VALUES

kl = Io  - asIoo = 1 gm cm2

k2 = Ioo = 100 gm cm 2

k3 = Io s  +aiIoo= 1 gm cm 2

g

k4 = -H = -10 5 gm cm 2 /sec

k5 = -asH= 5 gm cm 2/sec (a s  -1 0 sec)

k6 = PoH = 5 gm cm2 /sec (o 10 sec)

k = -I 0 (Iss- I) = -1 gm cm 2

g - r

k8 = Q = 10 gm cm 2

kg = -Ios + a ( -i1 i 1 gm cm 2

k10 = H2/K - Iss ii = 50 gm cm 2

. k.. =I oi -as (Iss -Iii) = 1 gm cm 2

k12 = - (H2/K - - I.. = -0.05 gm cm 2 sec

kl3 -(Ioo/K)H = -0.1 gm cm 2 sec 2

k 14 = (1oo/K)(Iss- ii) = 5 x 10-5 gm cm 2 sec 2

K = 108 dyne cm/radian
(Iss-Iii) = 50 gm cm 2
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TABLE 3.5-2

ILLUSTRATIVE TORQUE LEVELS

Sinusoidal Test Motion: W = 1 rad/sec, w= 6.28 rad/sec (1 Hz)

Test M
= pwW ) M) 

=
W y M 

=

Axis (dyne cm see 
2 )  

(dyne cm) (dyne cm sec) (dyne cm) (dyne cm sec
2

) (dyne cm)

o 2 = 100 628.0 k5  5 5.0 k = 10 5.0

sk3 = 1 6.28 k 6 = 5 5.0 -k =1 0.5

ki = 1 6.28 -k 4 = 105 105 k 7 = -1 -0.5

"1 \ . 449.0
.(k2 +k3) = 71.5

J-2 = 0. 5 + k) 7.07 7.07 (k -7 +%k 1 ) = 6 3.0

k 1 3 = 0.1 0.16

/" (k + k = 71. 5 449.0 (k 4 + k 5 ) =0, 00 70,700 (k 7 + +k 11 ) 5 2.5

S1. = 1. 414 8.89 - 4 +k = 70,700 70,700 10k = 25 12.5

test at the rate, W, and M is one half the value, /W 2, corresponding to a

constant rate test at the rate, W. The larger torque levels occur as M.

ihen the test axis is i, i/o or i/s; these involve gyroscopic terms, Hw.i

The medium-sized levels occur as M when the test axis is o, o/s or i/o;

these involve output axis inertia terms, 0 0oo w . All other terms are

relatively small. The M terms, which are not included in the table, are

extremely small. For example:

M 3 3k  = 0.013 dyne cm
P 8J2 k1 2 W

Reproduced from
best available copy. 127
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Similarly, the p term involving k 1 4 is:

M 1 3
M 8 k 14  

W 3W = 0.000028 dyne cm
914 8 14

The variation of test torque levels with the magnitude of the applied

test motion quantities (W and w) is illustrated in Figs. 3. 5-1 and 3. 5-2. The

torque levels corresponding to each basic parameter group which contributes

torque in the o, s, and i axis tests are plotted versus W in Fig. 3. 5-1 and the

left hand side of Fig. 3. 5-2. The right hand side of Fig. 3. 5-2 plots the

torques produced in the o/s, i/o and i/s axis tests by those parameter groups

(kg, k 1 0 , kll and k13) which do not contribute in the first three tests. The

contributions of the parameters already covered in the previous plots are not

shown. For example, k4 produces large torques in both the i/o and i/s

axis cases; their magnitudes are 1/i2times the value shown (labeled Mk)

for the i axis test.

The M levels (Mkl, k 2 , k 3 ) are linear in both W and w. The MX

levels. (Mk4,k5, k6) are linear in W and independent of w. The M levels

(Mk 7 , k8, kg, k10, kll) are proprotional to W2 and independent of w. The

M term, Mk 1 3 , is proportional to W2 and linear in w.

It is worth noting that for a fixed amplitude, A, of angular

excursions in a sinusoidal test, all of these quantities vary with frequency.

Thus, if:

etest = A sin wt (3.5-1)
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Then

test = wtest = cos wt (3.5-2)

Therefore:

W = A (3. 5-3)

and:

2
M = wW =  ot2A

MX =XW = XwA (3.5-4)

1 2 1 22
M = YW = yw A

3.5.2 Test Errors

Table 3. 5-3 lists the assumed set of error source values used in

the example error calculations which are summarized in Tables 3. 5-4

through 3. 5-9. The calculations are based on the error formulas given in

Table 3.2-2, for the three types of single-axis testing and each of the six

test motion axes. For two of the eleven error sources listed in Table 3. 5-3

alternate values are given, one for small signal cases (test axes o, s and

o/s) and one for large signal cases (test axes i, i/o and i/s). The quantization

level, q, is considerably smaller in the small signal cases because of the

opportunity for scaling the rebalance loop to take advantage of lower signal

levels. It is :also assumed that the parameter shifts, XSH, are larger in
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R-12.3

10

MOTION ABOUT MOTION ABOUT

OUTPUT AXIS SPIN AXIS

10
s

10' ,00/ -

10 / /

° / 12/

1030

0.01 0.1 0.01 0.1
W (rad /sec) W (rad/ sec)

Figure 3. 5-1 Variation of Torque Levels With Test Motion
Amplitude and Frequency: o and s Test Axes
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106

MOTION ABOUT "o/s" TEST: ky,,k, 3
INPUT AXIS "i/o" TEST: k,

"i/s" TEST: kjo

104

c/

///

/ /

W(rod/sec) W (rod/se c)

/ /

Ampitude and Frequency:i, o/s, i/o and i/s

0.1 i .\13

0.011
0.01 0.1 1 0.01 0.1

W(rod/sec) W (rod/soc)

Figure 3.5-2 Variation of Torque Levels With Test Motion
Amplitude and Frequency: i, o/s, i/o and i/s
Test Axes
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TABLE 3.5-3

ASSUMED ERROR SOURCE VALUES

T = 100 sec

h = 0.1 sec (N = 10/cycle)

Error Sour ce Value

1. Magnitude Bias, 6W 0.02 rad/sec
(sinusoidal)

2. Distortion, A 1 x 10- 3

(sinusoidal)

3. -Magnitude Noise, a ,TU  0.02 rad/sec, 1 sec
(sinusoidal)

4. -Misalignment Bias, C 10.0 sec

5. Misalignment Shift, CSH 5.0 sec
(constant rate)

6. Table Wobble, C 1.0 sec

7. Quantization, qsm /qg 0.4/40.0 dyne cm sec

-4

8. -Torquer scale Factor, SC 2 x 10- 4

. 2 x 10 4

1-

9. Torquer Nonlinearity, CNL C2  2 x 10- (dyne cm)-1
10-10 2

e3  1 x 10 (dyne cm)- 2

10. Measurement Noise, av' Tv 2.0 dyne cm, .01sec

(SHsm /SH Ig 0.1/1.0 dyne cm sec

11. Parameter Shifts, YSHsm /SHlg 0.1/b.5 dyne cm sec 2

(constant rate) g
(McSH 0.01 dyne cm
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TABLE 3.5-4

EXAMPLE ERROR SUMMARY: o TEST AXIS

p = 2  =k5  y =k 8 2
=100 dyne cm sec 2  5 dyne cm sec =10 dyne cm sec2

Constant Rate Sinusoidal Sinusoidal Harmonicsveraging

1. M agnitude Bias W 0 _, 2 0
0 _______ 0.1

0 0.2 0.2

2. Distortion A 0
0

3. Magnitude Noise aw -42 0.24
0 0670.24

0 0. 87 PL

4. Misalignment Bias 7 0
5.0 5.0

0 0 0

5. Misalignment Shi ft SH
2.5 --t

1.25 ---

6. Table Wobble, W 0
0.5 0

0.25 0 0

7. Quantization q 0.007
0.016 0.046

0.008 0.003 0.092

8. Torquer Scale Factor cSC _ _ 0.02
0.001 0.001

0.002 0.002 0.002

9. Torquer Nonlinearity (Ci 0.104

'NL 2 0.00001 0

-3 0.0001 0.002. 0.001

10. Measurement Noise a 0.013
v 0.79 0.079

0.40 0.16 0.16

11. Parameter Shifts i SH __

McSH 0.079

2.05
Total (RSS) a 2.05

OX  5.67 5.01

o, 1.34 0.72 1.45
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TABLE 3.5-5

EXAMPLE ERROR SUMMARY: s TEST AXIS

p=k 3  2 X=k6 k2
S1 dyne cm sec = 5 dyne cm sec = 1 dyne cm sec

Constant Rate Sinusodal nusodal armonics
Averaging

1. Magnitude Bias 6W 0. 2
0 0.1

0 0.02 0.02

2. Distortion 0

0 0

3. Magnitude Noise a 0 0.24

0 0.21 0.21

4. Misalignment Bias 0
5._ 5.0

0 0 0

5. Misalignment Shift 7SH
SH

1.25 ---.

6. Table Wobble W 0
0.5 0

0.25 0 0

7. Quantization q 0 0.007

0.016 0.046

1 0.008 0.003 0,092

8. Torquer Scale Factor (SC 01 0.0002

0.001 0.001

0.0002 0.0002 0.0002

9. Torquer Nonlinearity 411 _1 0

NL 2 0.000001 0

0.00001 0 0

10. Measurement Noise a 0.013

0.79 0.079

0. 40 0.16 0.18

11. Parameter Shifts XSH

VSH 0.142 ---

McSH) 0.079

Total (RSS) op 0.045

o 5.67 5.01

Cy 1.34 0.21 . 0.23
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TABLE 3.5-6

EXAMPLE ERROR SUMMARY: i TEST AXIS

Pk = 
k4  y 

= 
k7  2

2 2

1 dyne cm sec 2 105 dyne cm sec = 1 dyne cm sec

Constant Rate Sinusoidal Harmonics
Averaging

1. Magnitude Bias 6W 0.02
0o 2000

o 0.02 0.02

2. Distortion _ 0
0

0 0_

3. Magnitude Noise aw 33.5

0 0.21 0.21

4. Misalignment Bias 7 0

0 0 0

5. Misalignment Shift TSH

0 --- 0--

6. Table Wobble (W 0 0

0 0 0

0.728
7. Quantization q

I1.63 4 _ _ _ _ 4.58

0.815 0.326 9.16
0.0002

8. Torquer Scale Factor SC
20.0 20.0

0.0002 0.0002 0.0002

9. Torquer Nonlinearity 3. 0

NL 'i2 3.0 16.0

: V , 25 17.0

10. Measurement Noise o 0.013
S0.79 0.079

0.40 0.16 0.16

11. Parameter Shifts ASH );
YSH 1.01

0.73
Total (RSS) op

ax 20.3 2000

oy 30.0 25.5 201
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TABLE 3.5-7

EXAMPLE ERROR SUMMARY: o/s TEST AXIS

(C) = (k2+k3 )//2 = (k5+k6)/45 y = (-k/+k8+k 11)/2

= 71.3 dyne cm seec = 7.07 dyne cm sec = 6 dyne cm sec

Q(S2= kl= 0.1 dyne cm sec
3

Constant Rate Snusoidal Harmonicsostn ate_ Averagng

V 7 V qC1)/qS2 ) v
1. Magnitude Bias 6W 1 _ L /0o.o04

0 _0.14

0 . -12 0.12
2. Distortion A 0

0

--- 0

3. Magnitude Noise 0, 6/0.084
0 0.28

0 0.2 2
4. Misallgnment Bias T I 0

0 0 0

5. M isalignm ent Shift SH --- ---

1.25 ---
6. Table Wobble 0/1.0

.5 0
0.25 0 0

7. Quantization q - 0.007/0.007
0.016 , I 0.046

0.008 0.003 0.092

8. Torquer Scale Factor (SC , 0.015/0
0.0014 0.0014

0.0012 0.0012 0.0012
9. Torquer Nonlinearity I I0.001/0

fNL 2  
1000001 0

3L'0.0001 0.13 0.001
10. Measurement Noise av  , 0.013/0.013

0.79 0.079

.4- o. 16 0.16
11. Parameter Shifts 'H 00

SH_

McSH 0.079 --- ---

Total (RSS) a ) 1.57/1.00

o. 5.67 5.01

li 1.34 0.55 1.04
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TABLE 3.5-8

EXAMPLE ERROR SUMMARY: i/o TEST AXIS

p= (kl+k2)/ X = (k4+k5)/2 y = (k7+k8+kg)/2
=71.5 dyne cm sec2  = 70,000 dyne cmsec = 5 dyne cm sec2

Constant Rate Sinusoidal Sinusoidal Harmonics
Averaging

1. Magnitude Bias 8W 1.53

0 1414

0 0.10 0.10

2. Distortion A 0
0

0 142
3. Magnitude Noise aW 0.36

0 28.2

0 0.47 0.47

4. Misalignment Bias 0
3.53 I 3.53

0 0 0

5. Misalignment Shift SH 1.77
1.77 ---

0.88 --- ---

6. Table Wobble W 0

0.353 - 0

0.177 0 0

7. Quantization q P 1.63 0, 728
4.58

0.815 0.326 9.16
8. Torquer Scale Factor (SC 0.0153

14t 1 14.1

11 0.001 0.001 0.001

9. Torquer Nonlinearity i 1 0.0006

CNL 2 1.35 , 6.9

(3) i 13.53 18.1 12.1

10. Measurement Noise a v  0.013

0.79 0.079
0.40 0.16 0.16

11. Parameter Shifts X SH

YSH 1.01

McSH) 0.50 --- ---

Total (RSS) a 1.73

O 14.8 1414

Oy 13.6 18.1 143
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TABLE 3.5-9

EXAMPLE ERROR SUMMARY: i/s TEST AXIS

p = (kl+k3)/i 2 = (k4+k6)/4 y = k!0/2
= 1.414 dyne cm sec2  = 70, 7000 dyne cm sec = 25 dyne cm sec2

Sinusoidal

Constant Rate Arinusodal Sinusoidal Harmonics

), ,y y 0 Y

1. Magnitude Bias 6W 0.028

0 1414

0 0.50 0.50

2. Distortion A 0

.0 14..L 1

3. Magnitude Noise aW 0.05

0 28.2
0 1.06 1.06

4. Misalignment Bias ( f 0
3.53 _ 3.53

S0 0

5. Misalignment Shift ESH
1.77 ---

0.88 --- ---

6. Table Wobble eW 0
0.353 0

0.177 0 0

7. Quantization q 0 728
, 1.63 4.58

0.815 0.326 9.16

8. Torquer Scale Factor (SC 1 0.0003
14 1 i 1 1 14.1

0.005 0.005 0.005

9. Torquer Nonlinearity I' i  0

NL C2 1.35 6.9
'3 .53 18.0 12.0

10. Measurcment Noise o I 0.013
0.79 0.079

0.40 0.16 0.16

11. Parameter Shifts ( \SH i

SSH 1.01 ---

McSH 0.50 ---

Total (RSS) a 0.73

a 14.9 141414

O, 13.6 18.0 142
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in the large signal cases; these shifts represent very small percentage

changes in very large quantities (see Table 3. 5-2). The assumed test

motions are:

1 = 2 rad/sec constant rate tests

W2 = 0.1 rad/sec

W = 1 rad/sec
W = 2 rad/sec sinusoidal tests

W = 2r rad/sec

The calculation of the time-dependent errors is based on the test time:

T = 100 sec'.

In each column of Tablse 3. 5-4 through 3. 5-9 the values in the third and

tenth rows have been compared, and the smaller of the two dropped, before

combining errors in RSS fashion to calculate the overall one-sigma

estimation errors,o, a , or a, given at the bottom of the column. (See

the discussion in Section 3.2.1.) In each column the one or two largest

contributions to the overall error are underlined.

Table 3.5-10 summarizes selected results from the six preceding

tables. For each of the parameter groups, k 1 through k11 and kl3, the test

axis which appears best suited for determining that parameter group is

shown in Table 3. 5-10, along with the corresponding one-sigma estimation

error. For example, k 7 = y for spin axis tests and input axis tests, but the

one-sigma estimation error, a , is much smaller in the former case

(compare Tables 3. 5-5 and 3. 5-6), so the value for the spin axis test is
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TABLE 3.5-10

EXAMPLE ERRORS: SUMMARY COMPARISON

Basic I a Error/Largest Contributor
Parameter Best Nominal Value Constant Sinusoidal Sinusoidal

Parameter(s) Group Type Test of Parameter Rate Average Harmonic
Axis

kI I ----- --- 0.73/q
oi -1 dyne cm see
oig k 1 oy /s 3.28/ SH 1.33/w 2.55/A

I00 k2  o 100 dyne cm sec2  --- --- 2.05/6W

k3  dyne cm sec 2  --- --- 0.045/awI 5 1 dyne cm se2
-- g - k q 1/o 27.3/ENL2, 3 36.2/ENL1 143/A

I k Y a 1 dyne cm sec2 1.34/SH 0.21/a w  0.23/a w

H = k4  1 105 dyne cm sec 20.3/cSC --- 2000/6W

aeH = k5 o 5 dyne cm sec 5.67/? --- 5.01/k

IoH  = k6  X 5 dyne cm sec 5.67/? --- 5.01/?

Q = k8  o 10 dyne cm sec 2  1.34/SH 0. 72/aw  1.45/A

H2
- A = k10  y i/s 50 dyne cm sec2  27.2/cNL 36.0/NL 284/A2,3 1

Ioo
H = k13 y o/s 0. 1 dyne cm sec 3  

-1.0/ 

included in Table 3. 5-10. With each numerical entry is a symbol

indicating which of the eleven error sources contributes the most to that

particular estimation error. For example the error in estimating k8

(which is best determined by one of the o axis tests) is dominated by

misalignment shift (ESH), test motion magnitude noise (aW) or distortion
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-(A),- depending on which of the three types of test is used (refer back to

Table 3.5-4). The parameter groups, k 1 2 and k 1 4 , are not included in the

example error calculations because of their extremely small size, (see

Section 3.5-1).

With three exceptions (kg, kl 0 and kll1 ) the one-sigma estimation

-errors given in Table 3. 5-10 are simply the appropriate RSS values

(a aa a ) given at the bottom of Tables 3.5-4 through 3.5-9. For

example, the value 0. 73 for the k 1 estimation error comes from the value

for a given at the bottom of Table 3. 5-6. However, k 9 and kll appear only

in combination with k 7 and k8 in the definition of y in the o/s and i/o test

pxis cases, respectively. Therefore, k and k8 must be estimated first

(using s and o axis tests) and subtracted from the current estimate of y as

follows:

k = 2Yo/s - k 7- k8

c:: = 2 o/s- s - YO (3.5-7)

11 = 2yi/o + 7 - 8

2 i/o +y -yo (3.5-8)
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The values shown in Table 3. 5-10 for a k and ak 11 are computed from

a = 4 a2  + 2 + a 1/2 (3.5-9)

and

[4 2  2 2 1/2

= [ a2 + a2 + ] (3. 5-10)
Ck11 L i/o Ys Yo

In a similar manner:

l [42 1/2
= 42 (3. 5-11)

10 L i/s

Table 3.5-10 is arranged to illustrate the relative difficulty in

determining the various individual parameters (Ioig, Ioo, etc) using the

several types of single axis testing. For the error source values assumed

here, it may be observed that:

* The cross product of inertia Ioi , may be determined as

k 1 by sinusoidal harmonic testing about the input axis or

as kll by any of the three types of testing about the o/s

axis. The smallest of the estimation errors shown cor-

responds to the first method (even though it is a large

signal case -- the p term is not affected by distortion,
nonlinearity and magnitude bias the way the X and y terms

are). However, all four values are of the same order of

magnitude and each has a different largest contributor, so

the relative estimation errors are very sensitive to the

error sources.
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* The cross product of inertia, Ios , may also be determined

in any one of four ways, as k3 (oie way) or as k9 (three

ways). In this case there is a clear preference for finding
k3 using sinusoidal harmonic testing (about the s axis),
since nonlinearity and distortion have major effects on the

determination of k9 , which requires the large signal test

axis i/o.

* The cross product of inertia, Isi , may be measured in any
one of three ways, with angular &otion about the spin axis.

Sinusoidal testing (averaging or harmonic) appears
significantly more accurate than constant rate testing,

although this conclusion depends on the values of the dominant

error sources, which are different for the three cases.

* The output axis inertia, Ioo, appears as a p term only, and
measuring its effect requires the use of sinusoidal harmonic

testing about the output axis. The dominant error source

appears to be uncertainty in the knowledge of the applied
test motion amplitude.

* Measuring the wheel momentum, H, involves rotation about

the input axis, using a constant rate on a sinusoidal oscillation.

The former is much preferred because the applied constant

rate magnitude will be known more accurately than the

amplitude of the oscillation.

* The misalignments, as and 0o, of the sensitive axis of the

gyro may be determined using constant rate or sinusoidal
harmonic testing about the output and spin axes, respectively.
The two types of tests appear to be approximately equal in

accuracy since both are dominated by the bias misalignment,

C, of the test axis. However, if the procedure of reversing
the sensor on the table top and repeating each run is used,
the bias misalignment effect may be largely eliminated. In

that case different error sources become dominant in the

two cases: misalignment shift for constant rate testing, and
test motion magnitude noise for sinusoidal harmonic testing.

* The experimentally observed error term, Q, may be
measured in any of the three ways, rotating about the output
axis. The smallest estimation error shown in that cor-

responding to sinusoidal averaging, although all three are

roughly equal and each has a different largest contributor.
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0 The ki0 parameter group, H 2 /K-(Iss-Iii), may be measured

in any of three ways, rotating about the i/s axis (a large

signal case). Sinusoidal harmonic testing appears useless

due to the large distortion effect. The estimation errors in

constant rate testing and sinusoidal averaging are dominated

by torquer nonlinearity, the odd nonlinearities, E2 and E3,
in the former case and the even nonlinearity, 1, in the

latter case. In actual practice since k10 is made up of
"desired" or nominal gyro parameters, its value should be

known a priori more accurately than it can be determined by
either of these i/s axis tests. This suggests that the reason

for running such tests may be to compare the indicated and a

priori values of k 1 0 and to employ the differences as

measures of the two types of torquer nonlinearity. The

resulting measures of the nonlinear terms can then be used

to correct the estimates of k9 as obtained in the i/o axis

tests. A set of input axis tests can also be run to obtain

another measure of the nonlinearities.

* The k13 parameter group, IooH/K, appears only as a i
term and only in the o/s axis sinusoidal harmonic test.

: - Based on the assumed error source values and parameter
values the one-sigma estimation error is considerably
larger than the nominal value of k13. The dominant error

source is table wobble, cW . Removal of its contribution
reduces the overall error to 0. 085 dyne cm sec 3 . Since

the value of k13 is well known a priori, an attempt to
measure it in this way might be useful in verifying the

S-or accuracy of a sinusoidal harmonic testing set-up.

In summary, the reasons for considering the use of sinusoidal

harmonic testing are that it provides the only way to measure the effect of

oo the best way to estimate Iog and reasonably good redundant estimates

of several other gyro parameters in the small signal cases (test motion

axes o, s, and o/s). Sinusoidal averaging does not yield anything that is not

provided by constant rate testing, but appears to have better accuracy in

several cases.
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The example calculations summarized above are based on the

error formulas developed in Section 3.2 and tabulated in Table 3. 2-2.

In this case the formulas are used to compute parameter estimation

accuracies for an assumed set of error source values and test motion

quantities. The same formulas can also be used, in a less straight-

forward fashion, to generate test equipment performance specifications for

given desired estimation accuracies.

Chapter Summary. - The information which may be extracted

from single-axis vibration tests and constant motion tests is identified.

The effects of various test error sources, such as test machinery errors

and measurement errors, on the accuracy of estimating various observable

quantities are analyzed. The different types of tests are compared on the

basis of observable quantities, data redundancy, number of test runs

req ired, data processing difficulty and accuracy.

All basic parameter groups can theoretically be computed from

the observable quantities obtained in a sequence of six angular and six linear

single-axis vibration tests if the harmonic content of the periodic applied

torque function is extracted. The six test vibration axes should be oriented

parallel to the three principal sensor axes--input, output and spin (or

pendulum)--and to the three axes lying midway between pairs of principal

axes. The full array of observable quantities from a complete test sequence

provides a considerable amount of redundant data which "overspecifies" the

basic parameter groups.
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A sequence of sinusoidal vibration tests in which only average

torque measurements are made yields only the parameter groups which give

torques proportional to the square of angular rate or acceleration, and no

redundant data. However, the data processing requirements for determining

.average torque are considerably simpler than for extracting harmonic terms.

Extraction of certain harmonic terms provides redundant measurements of

these parameter groups but they are generally less accurate than the

measurements based on average torque.

All of the parameter groups except those which generate torques

proportional to angular accelerations can theoretically be computed from

the data produced in a sequence of constant motion tests. More test runs are

required since two or more different magnitudes must be used for each test

axis in order to separate the effects of various parameter groups. The data

processing function is the same as in sinusoidal averaging, and therefore

simple. Parameter estimation errors are more affected by some test error

sources and less affected by others, as compared to sinusoidal testing.

The data processing function for sinusoidal harmonic testing con-

sists of three phases. The first phase, in which harmonics are extracted

from the sensor output data for each run, directly influences the choice of

laboratory data processing equipment. Three candidate types of processing

algorithm, Fourier analysis, least squares estimation and Kalman filtering,

are considered and developed in some detail. The second phase is the com-

putation of the basic parameter groups from the redundant array of Fourier

coefficients. The third phase is the solution for individual sensor

parameters.
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The choice of test duration, for constant rate tests as well as

sinusoidal tests, is governed by the need to reduce the effects of quantiza-

tion and uncorrelated measurement noise. The Kalman filtering formula-

tion of the data processing problem is useful in deriving relationships

between test duration and test accuracy. Similarly the least squares esti-

mation formulation is used to show the effects of total test time and the

sample interval size on overall test accuracy.:.

Detailed numerical results of a set of example calculations,

corresponding to a typical SDF gyro undergoing a sequence of six constant

rate and six sinusoidal angular motion tests, are presented. These results

include the torque levels associated with each basic parameter group and

the variation of those levels with test motion quantities. Also illustrated is

the application of the entire set of test error formulas (given in Table 3.2-2)

for each of the three types of single-axis tests considered and each of the

six. recommended test axes. A summary comparison of the predicted errors

in.estimating ten potentially significant quantities is given in Table 3.5-10.
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4. IMPLICATIONS FOR TEST LABORATORY EQUIPMENT

The investigations described in the previous two chapters lead

to some rather important conclusions and recommendations concerning

the choice of laboratory equipment. These recommendations must be

considered tentative at the present time since the investigations are

incomplete. They are included, however, in the hope of stimulating fur-

ther discussion and interchange of ideas.

4.1 TEST MOTION'MACHINERY

A significant overall recommendation stemming from the study

to date is that great stress should be placed on the appropriate use of

conventional single-axis devices, together with vibratory and constant

motion, for testing strapdown inertial sensors. In order to obtain the

maximum usefulness from the test data, careful attention should be given

to techniques for controlling and/or measuring the supplied motion and to

the means for processing the sensor output data produced during the tests.

The following conclusions pertain specifically to single-axis

testing of single-degree-of-freedom sensors, on which the study has

thus-far focused attention:

Since it is essential, in sinusoidal harmonic testing,
to time-synchronize the sensor output data with the
test motion history (see Section 4.2), the test device
must include a means to provide accurate timing
signals indicating the time of passing through a zero-

reference position. These signals must be merged
with the recorded sensor outputs or, in the case of
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real-time processing, used to control the computation

itself. Of course, other measurements leading to a
more accurate knowledge of the applied motion history
are highly desirable.

* It is more important to keep the form of the applied
motion close to that of a pure sinusoidal oscillation

than to accurately control (or know) the amplitude of

the oscillation. The example calculations suggest
that a bias error on the order of one percent in the

applied amplitude does not generate unacceptable test

errors, while a distortion of the shape of the applied-

motion that causes second harmonic terms on the

order of one-tenth of one percent of the fundamental
motion amplitude leads to very large errors in some

cases (when the sensor input axis is along or 45

degrees away from the test axis). In some "small

signal" cases (when the gyro input axis is perpendicular
to the test motion axis) distortion is also a dominant

error source. Table 3. 5-10 shows that if distortion

were significantly reduced from the assumed value, the
estimates of parameter groups k8 and kll via sinusoidal

harmonic testing could be greatly improved.

* The example calculations indicate that a bias misalign-
ment of the table axis is the dominant error is estimating

component misalignments. (A 10 is table axis mis-

alignment results in a 10 sec error in measuring as or

Po, depending on the test axis.) However, this bias

effect can be largely removed by repeating the appro-

priate tests after a 180 degree rotation of the sensor

with respect to the table. If the sensor is rotated as

described, the effects of run-to-run shifts in the table

axis misalignment and of table wobble become more

important than the bias for constant motion tests. The

example calculations suggest that values on the order of

several arc seconds will be acceptable for both of these

error sources.
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* As a result of satisfying the timing requirement
discussed in the first item above, the frequency of the
applied test motion will be known very precisely.
Therefore, uncertainties in the derived Fourier
coefficients caused by errors in knowledge of the applied
frequency will be insignificant (for the example calcula-
tions show that frequency errors on the order of one
percent are acceptable).

4.2 DATA PROCESSING EQUIPMENT

Constant Motion and Sinusoidal Averaging - If testing is

confined to constant motion and averaging measurements made during

i bratory motion, the data processing requirements are relatively

simple. For each test run the net number of pulses, representing the

integrated torque, and the total test time must be recorded. Following

a sequence of test runs some linear algebraic equations must be solved

to yield estimates of the parameter groups and sensor parameters (see

Eqs. (3.2-3) and (3.2-4)).

Sinusoidal Harmonic Testing - For sinusoidal harmonic testing

the data processing equipment required in the test laboratory is deter-

miiined mainly by the data processing phase Ia (see Fig. 3.1-3). The

other phases must await the completion of a sequence of single-axis tests

and, therefore, will be performed off-line. (To the extent that some of

t~'is subsequent processing can lead to a quick determination if a test is

successful, there could be a significant operational advantage in having

a limited amount of off-line capability readily accessible at the time the

tests are being performed.)
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From the point of view of laboratory equipment choices there

are basically two ways to perform data processing phase Ia:

* Record the sensor output data (and measurements

of test motion if desired) for later off-line
processing.

. * Process the data on-line as it emerges from the

test, producing immediately a set of filtered
estimates of the observable quantities (Fourier

cs : E coefficients).

In-either case the leading candidates for a processing algorithm are the

Fourier analysis, the least squares estimation, and the Kalman filtering

procedures outlined in Section 3.4.

If the first method is used, the crucial equipment specifications

are those required of the recording equipment. They result chiefly from

the high output data rate. For an analog rebalanced sensor feeding an

analog recorder, the recorder bandwidth must be higher than the first

few harmonics of the maximum applied test motion frequency. It is not

possible at the present time to establish a quantitative requirements

since high frequency testing has not been investigated. For a pulse

rebalanced sensor feeding a digital recorder, it would be desirable to be

able to record the complete sequence of pulses in order to make full

use-of the test data. In this case the required data recording rate is

simply the maximum pulse rate used by the strapdown sensors under test.

Consider the following numerical example: a maximum test time of 200

seconds and a binary pulsed gyro with a pulse repetition rate of 5000

pulses per second. The recorder must, therefore, have the capacity to

store a sequence of one million binary digits at the rate of one every 0. 2

milliseconds. Simultaneously it must record "timing marks" in a

parallel channel, indicating the zero-reference points in the test motion

history.
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If on-line processing is used the computer must be able to

accept data at the sensor output data rate and simultaneously, process

equations like those of Section 3.4 at this same rate. This implies very

short operation times for the computer used. The various sets of

equations for the sinusoidal coefficients [for example, Eqs. (3.4-4) and

(3.4-5)] point up the need for careful time-synchronization between the

:-Qoutput data and the applied motion. The "weighting factors," sin nwt and

co cos nwt, must be cycled through 2Tn radians for each period of the test

Smotion, without drifting out of phase. Otherwise, the computation will

--niiot be one of averaging m sets of properly computed Fourier coefficients.

A--AIso, if either the least squares estimation or Kalman filtering equations

ar~e used, the time-varying elements of the H matrix [see Eq. (3.4-29)]

ieS-must be kept in phase with the actual applied motion history.

Chapter Summary - Test motion machinery specifications may

be derived from an understanding of the manner in which test motion

errors propagate into parameter estimation errors and from the overall

',:-test accuracy requirements. The propagation of test motion errors for

constant rate testing, sinusoidal averaging and sinusoidal harmonic testing

are treated in detail in Section 3. 2. The overall test accuracy require-

ments depend on the underlying reasons for conducting a specific set of

tests - whether they are research oriented or mission oriented, etc. -

as discussed in Section 1.1. The data processing functions for constant

-::rte testing and sinusoidal averaging are quite simple. For sinusoidal

harmonic testing the data processing equipment specifications depend on

-whether off-line or on-line processing is used. In the former case the

recorder characteristics, which depend on data rate and test time, are

crucial. In the latter case the on-line computer characteristics, which

are dictated by the data rate and the detailed nature of the estimation

equations outlined in Section 3.4, are crucial.

153



THE ANALYTIC SCIENCES CORPORATION

5. CONCLUSION

5.1 SUMMARY OF FINDINGS

The starting point of this effort is a set of equations (derived in

Refs. 2 and 3) for motion-induced error torque in single-degree-of-freedom

(SDF) sensors. These error models have been manipulated in a way which

is valid for closed-loop, low-frequency testing, yielding error torque

expressions which are linear functions of a set of "basic parameter groups"

defined in Table 2.4-1. All of these basic parameter groups can theoretically

B1 identified and measured by means of a sequence of single-axis vibration

tests, -including six angular vibration tests, and six linear vibration

te~is. All but one of them are independent of test motion frequency

and magnitude. *

= . . The following three types of single-axis angular-motion tests have

been studied in detail:

* Constant Rate Testing

si :l :: * Sinusoidal Testing, Averaging

e Sinusoidal Testing, Harmonic Extraction

The bases for comparing the three types include the observable quantities

(measurable parameter groups), the amount of redundant data provided,

the number of test runs required, the degree of difficulty of data processing

See the discussion in Section 2.4.1 of the effect of rotor speed control

loop dynamics on k10 .
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required and the accuracy with which various parameters can be estimated.

(A comparison summary is given in Table 3.2-3.) Constant rate testing is

the simplest to perform but does not produce the complete set of basic

parameter groups. Sinusoidal averaging is simpler than sinusoidal harmonic

testing but yields an even smaller subset of the complete list.

The principal data processing function for both constant rate

testing and sinusoidal averaging is to compute average torque by generating

a net pulse count and dividing by the total time of a test run. For a sequence

of sinusoidal harmonic tests there are three data processing stages: the

computation of Fourier coefficients defining the periodic applied torque

function for each test run; the processing of the entire array of coefficients

,from a complete sequence to produce the basic parameter groups; and the

_computation of individual sensor parameters. The first stage may be

performed by means of Fourier analysis, least squares estimation or

Kalman filtering (detailed equations for all three candidates are given in

Section 3.4). The second stage is an "overspecified" algebraic problem

involving redundant information. The extra data can be used as a cross-

check on the operation of the test sequence or as a means to indicate the

existence of error torques not included in the model. The third stage is a

-simple algebraic problem.

Methods have been developed for analyzing the effects of various

test error sources and of test duration on the achievable accuracy in

estimating sensor parameters. Three classes of test error sources are

considered: test motion errors, measurement errors and changes in the

sensor parameters. Motion errors and measurement errors have bias,

cyclic and high-frequency noise components, including the effects of

quantization. The resulting error formulas (summarized in Table 3.2-2)

have been used in a set of illustrative numerical calculations based on an
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assumed set of typical SDF gyro parameters. In these examples the

nominal magnitudes of the coefficients of the third harmonic terms are

extremely small, leading to the conclusion that the significant data from

each vibration test will be contained in five Fourier coefficients (the bias

term, the coefficients of the sine and cosine terms at the fundamental test

motion frequency and the coefficients of the second harmonic sine and

cosine terms). Constant rate testing or sinusoidal averaging appear to be

more' accurate than sinusoidal harmonic testing in a number of cases.

Sinusoidal harmonic testing provides good redundant measurements in the

cases where the sensor input axis is nominally perpendicular to the test

motion axis. It also provides good measurements of parameters and

paiameter groups which cannot be determined by the other types of testing.

iA to situations sinusoidal harmonic testing appears to yield the most

accurate estimates of parameters which can also be measured using one of

the other techniques.

5.; 2 RECOMMENDATIONS

The apparent effectiveness of a combination of vibration testing

and constant rate testing leads to a major recommendation of this study--

that conventional single-axis devices should be given strong consideration

when developing test procedures for strapdown inertial sensors. Some

iidiciftoins of quantitative test equipment specifications can be drawn from

the example test error calculations presented (these are summarized in

Section 4. 1).
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While constant rate testing is by far the simplest to perform, it

is important that some cross-checking by sinusoidal averaging and probably

by harmonic testing as well, be performed. It may be desirable, for

example, to develop an operational calibration procedure using constant rate

testing to generate coefficients which will compensate for the effects of

system vibrations. The appropriateness of compensation so derived should

be verified by means of vibration testing, which more closely resembles

the dynamic environment to which strapdown sensors will be subjected.

If maximum benefit is to be obtained from harmonic testing,

either high speed recording equipment or high speed on-line, real-time

data processing equipment will be required in the test laboratory. These

would be needed to extract the harmonic content of the rebalance torque,

averaging data taken over many test motion cycles. A trade-off between

the sophistication of laboratory data processing equipment and the complexity

bf -motion-supplying devices is apparent. For example, a sequence of

i6ingle-axis vibration tests combined with data processing which extracts

'iharmonics, can substitute for multi-axis tests employing out-of-phase

vibrations.

An overall conclusion may be stated as follows: It appears

that useful information can be obtained from a sequence of practically

achievable single-axis vibration tests. However, the test error

analysis is only as good as the assumptions on which it is based, and it is

possible that some test error sources will be much larger than those

assumed in the example calculations, or that there are other important

error sources not included in the analysis. It is therefore recommended

that a set of feasibility tests be conducted as soon as possible. These tests

would apply low-frequency single-axis angular vibrations to an
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analog-rebalanced SDF gyro and use available signal-processing equipment

to determine the harmonic content of the gyro output signal. The test

results should be used to answer the following questions:

* Do the magnitudes of the output harmonics
agree generally with predictions?

* What are the most significant sources of
test error?

* What can be done, via test hardware modi-
fications, to reduce these errors?

* After appropriate hardware modifications have
been made, what is the "real" data processing
problem remaining? That is, what noise sources
must be filtered; or what cyclic or bias errors
should be calibrated?

Besides verifying the practicality of the proposed type of testing, a series of

feasibility tests would provide information which would be useful in guiding

the continuing analytic studies discussed below. These, in turn, would

become more useful in producing realistic test laboratory equipment

specifications and in developing appropriate data processing procedures.

5.3 CONTINUATION OF EFFORT

Studies related to low-frequency, single-axis testing of SDF

sensors will continue, with the goal of making specific recommendations as

to test procedures and data reduction techniques. It is anticipated that a

hybrid simulation will be employed to verify the analyses already performed

and to evaluate alternative data processing schemes, such as those discussed

in Section 3.4.
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A better understanding of motion-affected errors which are

mentioned in Section 1.1 but not included in the present error models, such

as those caused by scale factor changes and friction torques, will be

developed. These additional error terms will also be considered in devising

test procedures.

The test error analyses described in Section 3.2 will be expanded

to include the effects of pulse rebalance schemes. The overall analyses will

be developed into a parametric study, covering a range of sensor parameters

and test motion quantities, with the goal of providing approximate indications

of the test duration and equipment precision required to extract sensor error

parameters to specified accuracies. To ensure the validity of the results,

several spot-checks will be performed by simulation.

The potential advantages and difficulties of employing high-frequency,

single-axis vibration tests on inertial sensors will be evaluated. An attempt

will be made to re-formulate the data processing problem discussed in

Section 3.4 in a convenient way which does not depend on the low-frequency

assumption. A high-frequency test motion error analysis will, if needed,

also be developed. - The goal of this investigation is to indicate if information

concerning dynamic instrument errors that is not revealed by well-designed

low-frequency tests can be extracted by high frequency tests, and if so, to

provide error analyses which can be interpreted in terms of test equipment

specifications.

The importance of stability of strapdown sensor parameters

suggests that the recommended tests be employed in a sequential fashion,

aimed at measuring stability. Strapdown sensors may only be calibrated

before installation in a vehicle (since they cannot be isolated from incidental
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vehicle motions and reoriented relative to gravity and earth rate) and a

means must be available to predict, with known confidence limits, the

stability of the measured parameters. Stability will also be a prime

objective of the instrument designer, and tests which relate sensor design

features to coefficient stability will be of great value. Prior theoretical

work related to this subject will be reviewed and experiments for evaluating

mathematical models of parameter variation will be designed.
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APPENDIX A

DERIVATION OF TRIGONOMETRIC SERIES COEFFICIENTS:

VIBRATION TESTING OF SINGLE-DEGREE-OF-FREEDOM SENSORS

This appendix derives expressions for the Fourier coefficients

which are the observable quantities in single-axis angular and linear

vibration tests of single-degree-of-freedom (SDF) gyros and

accelerometers.

SDF Gyro: Angular Vibration - The general expression for

angular motion-induced torque in a SDF gyro is given as Eq. (2.4-5)

and is repeated here:

Mang = k1 i + k2 o + k3 bs

+ k4wi + k5 o + k6 s

2 2 2
+7 wi + k o - k7 s

+ k 9wi o + k 0 .i s + kll1 ow s

3 2
+ kl2 i - kl2 i s

2 2

+ kl3 o s + k14 oi - kl4"o s  (A-l)

where k through kl4 are the basic parameter groups defined in Table 2.4-1a.
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A general single-axis angular vibration of amplitude W and

frequency w can be represented by:

w= c. Wsin wt = W. sin wt (A-2a)
i 1 1

S= c Wsin wt = W sin wt (A-2b)

Ws = csWsin wt = Ws sin wt (A-2c)

where c., c and cs are direction cosines relating the vibration axis to

the gyro principal axes and Wi is defined as ciW, etc.

The derivation consists of substituting Eqs. (A-2a), (A-2b) and

(A-2c) into Eq. (A-1), term by term, and applying well known trigono-

metric identities, as shown by the following examples:

kl i = klwW i cos Wt (A-3a)

kwiwo= kWiWosin2 wt k Wi o(l - cos 2 wt) (A-3b)

k 2 = k WW2 sin3 t k W W2 (3sint -sin 3 t) (A-3c)12"is = 1 2  s 4 12 1 s

k iw L =[k W  w cos t sin wt
14 oWs 14W

=k W  W o cos Wt (1- cos 2 wt)
1 4 Wo 1-

= k14 oW W cos Wt - I(cos 3 wt - 3 cos wt)

=1 k WW2w (cos wt - cos 3 et) (A-3d)
4 14 o 164
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After treating all terms in Eq. (A-1) in the above fashion and grouping

similar terms, we obtain:

Mang B + S sin wt + Ccos Wt

+ S2 sin 2 w t + C2 cos2wt

+ S3 sin3wt + C3 cos3wt (A-4)

where the seven trigonometric coefficients (Fourier coefficients) are:

B=1 [k -W W 2 +kW21 0 W.W5W.W +W +k WW

(A-5a)

Sl =k4Wi + ko + kWs + k Wi (A-5b)

- = -w[kW. + k2Wo+ k3W +  kl 4 Wo (W W- )] (A-5c)

S 1 k (A-5d)
2 13  Os

C2 = - [k(W -W)+ kW2 + k9WW o + k 10W. W +k 11W W

(A-5e)

S3  - 41 22 (W -WiW2) (A-5f)

03= - 41  W -- ) (A-5g)
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SDF Accelerometer: Angular Motion -The general expression

for angular motion-induced torque in a SDF accelerometer is given in

Eq. (2.4-13) and is repeated here:

Mang= kl + k2 o + k3 p

2 2
+ k 4 wi -k 4 w p

+ k5io + k6i p + k7wo p

2 . 2
+k 8 cowi - ksop (A-6)

where k 1 through k8 are the basic parameter groups defined in Table 2.4-lb.

Equations just like Eqs. (A-2a), (A2-b) and (A-2c), except that

e and W are used instead of ws, cs and W s , are substituted into

Eq. (A-6). After applying the same trigonometric identities, illustrated

in Eqs. (A-3a) through (A-3d), and grouping similar terms, we obtain:

Mang B+C cos wt

+ C2 cos 2&t

+ C3 cos 3wt (A- 7)

where the four Fourier coefficients are:
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B= [k4  -W 2 ) +k 5. W +k 6 Wip + k WoW (A-8a)21 6 p

C1= [ k1W. + k 2Wo + k3W +k 8 W (W - W) (A-8b)

C2 k (W _- W + k WiW +k 6 W + kW W] (A-8c)

C3 k wW - W2 (A-8d)

SDF Gyro: Linear Vibration - The general expression for

linear motion-induced torque in a SDF gyro is given in Eq. (2.4-15)

and is repeated here:

Mi n = kf i + k2f o + kf s
lin 11 2o 3s

+ k4f + k5f 2

+ k6fifo + kfifs + k f fs (A-9)

where k1 through k8 are the basic parameter groups defined in Table 2.4-1c.

A general single-axis linear vibration of amplitude A and frequency

a, can be represented by:

f. = c. Asin wt = A. sin wt (A-10a)
1 1 1

f = cA sin wt = A sin tt - (A-10b)

fs = csA sin wt = Assin wt (A-10c)
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Substituting Eqs. (A-10a), (A-10b) and (A-10c) into Eq. (A-9) and regrouping,

we get:

Mlin  B + S1 sin wt + C2 cos 2wt (A-11)

where the Fourier coefficients are:

B =  k4A + k5A + k6AiA +k A iA s + k8A A s  (A-12a)

S1 = klAi + k2Ao + k3As (A-12b)

SC2 - k4 A + k5 A2 + k6AiA + k7AAs + k8 AAs (A-12c)

SDF Accelerometer: Linear Vibration - The general expression

for linear motion-induced torque in a SDF accelerometer is given in

Eq. (2.4-16), which is identical in form to that of Eqs. (2.4-15) and (A-9),

texcept that fp is used in place of fs. The basic parameter groups k1
cthrough k8 are defined in Table 2.4-1d. Equations just like Eqs. (A-iO0a),

t(A-10b) and (A-10c) can be substituted into Eq. (A-9) to yield Eq. (A-ll),

exactly. The three Fourier coefficients, B, S1 and C2 , are defined

exactly as in Eqs. (A-12a), (A-12b) and (A-12c), except that A appears

in place of A . Therefore:

1 2 2 1B I k4A + k A + kAiAo + kAiA +k A (A-13a)

S1 = klA i + k2A ° + k3A p  (A-13b)

C2 = k4 Ai + k5 AP + k6 AiA + kA A] (A-13c)
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APPENDIX B

TEST MOTION BIAS ERROR ANALYSIS:

ANGULAR VIBRATION TESTING OF

SINGLE-DEGREE-OF-FREEDOM GYRO

This appendix describes the effects of bias test motion errors

on the Fourier coefficients defining the applied torque function during

single-axis angular vibration tests. The test motion errors considered

are errors in the knowledge of amplitude and frequency of the applied

motions and misalignments of the test motion axes.

Derivation Overview - The derivation begins with Eqs. (A-5a)

through (A-5g) of Appendix A. These, equations relate the 7 Fourier

coefficients to the gyro parameters and the test motion quantities for

the general in-phase case:

r S (B, Sl, C1' S20 C2S 3 = f(k 1 ...l 14 , w2, o) ws, ) (B-1)

where f represents the seven given functions.

The derivation proceeds in three major steps as follows.

First, partial derivatives are taken with respect to the motion quantities

to yield 7 perturbation equations which can be expressed in one vector

matrix equation:
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8B

8S
6 1 W

bWSs
6C

Second, E•. (B-2) is transformed into the form:

8C.

hich relates the elements of M arFourier coefficient erroressions into test motion magnitue andW, W

SecoFinally, Eq. (B-3) is trspecializnsformed intfor the six test axis orientationsform:

of interest and reduced to the form:

170170 .
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6W

A= M3 (B-4)

E2

L 8wi

The test axis misalignment angles, c1 and '2, have different meanings in

each case. If the test axis is one of the principle axes (say i), then E1 and

c2 are simply the misalignments about the other two (o and s). If the test

axis lies midway between two principle axes (say i and o), then E1 is the

misalignment about the third (s) and c2 is the misalignment about the axis

perpendicular to both the test axis and the E2 axis.

These three steps are followed in detail below, concluding with

six equations (B-8a) through (B-8f) giving the expressions for the elements

of the matrix M3 for each of the six test motion axes of interest.

Derivation Details - Equations (B-5a) through (B-5g) give the

seven perturbation equations obtained by taking partial derivatives of

the seven equations, (A-5a) through (A-5g). Equations (B-6a) through

(B-6e) develop the relationship of component errors (6Wi, 6Wo , 5W, )

to magnitude and angle errors (6W, Ei, co, Es). The three relations

of Eq. (B-6e) were substituted into the perturbation equations to obtain

new perturbation equations, as shown in Eqs. (B-7a) through (B-7g).

Table B-1 summarizes facts needed to specialize the perturbation

equations to the six tests of interest. Finally, Eqs. (B-8a) through

(B-8g) present the seven perturbation equations in vector-matrix form

for the six cases.
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bB [k Wi -k Wo +k 1 W ]8Wi

+ k8- k9 Wi + k 1 1 Wo

S kW1i k1 11 l s

+ [o] 6w (B-5a)

S= k + 9 k W kW2 W

+ [k5] W

[ 2 1 2WiW5] 8s

+[0] 6w (B-5b)

8C = wk 1 k W. W 8W.[ 14 1 o

+ i + k k 3Ws I 4W ( - Wsw (B-5c)

S = [0] 8Wi + -[ k 1 3 Ws]6

k W +k W W (B-5d)
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8C2 [k Wi'kW -. i k 0 W] 6Wi

+I- k8o 1 kk 1 1Ws] 6W

+k 7  k iW -kiWo] 8Ws

+ [0] 8w (B-5e)

S 3 3k W2+ 1k W2 8w. + [0 61W.3 4 12 i14 12 s 11

+ 1k - W.W ]8W + [0]8w (B-5f)

3 = [- k14WiW 1 Wi

+ -A k, W2 W2 ]8W
S4 1 s o

+ " k 14 WW 6W

+[- 1kW W 2w ]w (B-5g)

W ~ W.i. + W + W (B-6a)

w = W 1 = W (c1 + cl + c s (B-6b)

86 = W 61 + 6W 1= 6~iWi + o + 68W1

= W (8c. iI. + 8c 0 1 + c 1 )

+ 6W (c 1 . + c 1 + c1) (B-6c)
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C

0

Boo

Figure B-1 Test Axis Misalignment Angles

The direction cosine errors are, from Fig. B-l:

6c. =c CS - C C
1 O O

8co = iCs - CsE i

6cS = Co i -CiEo (B-6d)

Therefore:

6W i = ci6W + Wcs o - WCo s

6W = CoW + Wc.is - Wc s

W = c W + WCoEi - WC (B-6e)
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6B=Wk c k + k0c (Ci8W + Ws - Wc

1

+W(- 1k9C + ks o + kll c s) -WCs~i +W.

+ w k 0 c + 1 k c - k 7 c) (c sW + Wc0 . - Wcio)

+ (0) 6W

= 2 k c2 klO 2 1k c. + 2kc. - - k8 ) CC e
2 1 1C k10C s 5 k 11 o 0  s 1 0 os
S1 2 1 2 1

W 2kloCi+2 1 s 2 kllCCo + 2k7cic s - lk9CoCs 0

2[ 1 i 2 Ik c2  1 k o

(B-7a)

1 4 12 1 2

S+ k 5 ] (C6W-Wc E. + We

+ k - 3k c.c W2] (c 8W + WCe - W.E
+ [k5  + k 6 cI 0kl2  C 1 1 W3

4c 2 4 o I 12 o)

+ k4 cs -k 6ci ) W + kl 2 C'Cs - k l 2 c W3 E

+[(k 4c + k5C )W + (-k 2 c + k 2cc2)W3] s
4 k12ci  c4 12CW

+ [0] 6W (B-7b)
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C = [k + k 14C.C ic8w + WCse - We

+Wk + (k 14 c Ik14 c2) W2] (c 8W - We . + Wc.)+o2 14i 1 414 s 0 s S

+ 1[k 3 - sk14 ces2] (s6W + Wee i - Wc.E

S33 2 3 2 1+ [(klci + k2Co +k 3 Cs)W +(k 14 c c k c k14 o 2)W3]

=wklC + k2co + k es + (k c2c - k c c2) W 2SW11 3s + 14=0 4 140os i

+ k2Cs + k3c W + -k 14 Cc 4k 14 s2 k4C 2 ) Ws i

+ w kc - k c.) W - -k cic cW3] c3 1 0

+[(klCo + kc W + (kl 4 Cc + kl4c 3 1 2W 3 E

+ [(kc. + k 2 c + k 3cs) W +( k 14 c. c- k 4cc )]w (B-7c)

s2 (0) 6W

3 c 13sW) (Co W i + W s

+ ( c W) (c 6W + We 0. - We.i e

I w c W 2

k"13 o0 s-

+W k 2 W2 c 2 W2 c + [- k c W2 c
13 02 13 s 2 i 13 1 o 2 0

+ k c + k c w (B-7d)
wk13cic 1 + 2 s 1 3  72
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C2 = c[(7ci k9 c - k10 cs) W] [c.SW + We s - WCe ]l

+ [(-k8 co + kgc - k1 1 co )W] [cW - Wcs i + Wci ]

+ [(k c - k10 c. - k 1 1 c W [c sW + WcE - Wc 1 c]

+ [0] sw

[k 7  kl0C - k7 C s + k kcC -o k 1 0 cic -k 19coCs )o

2 [+c2 2k 0 s1+ W2c. - k - k9  - (k + k ) c.- k c c o- kllc c ~ W c

3 2

11 o 1 s 0 9 1 8 7) 11 os
+ + c2 1k c 2 1kckc c- k c c + 1 k cc E.

~ 2kllo 2 11 s 2 10 o 2 1ss1 8 9s1

[ 1 2 1 2 1
+ 3 c. k c [+kc.Ck +2 k c + k cc

+ 2 i k - k + cico 1

+ [0] Sw (B-7e)

8s [(- 3 k c. +1 k c 2) W 2] c 6W + We - We c

+ [k 1ccW2 c sW + We . - We.0

=2 3 k c. + k c.c 6W1-12 1 4 12 1 s

+ W k c2 c C.- 12 i s 1

4 12 s 4 12 1 s o

4 12 o 4 12 co s

+ [0] 8W (B-7f)
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3 [- kl4cicW2] [iW + WCsEo - WCoe0s

+o (k4c2 + k3 4 cs2)W2] [c0 8W - Wc s i + Wcics

+ k1 4 cc sW 2 Cs6W + W Ei - Wi

+ 2 1 23

4 14C i 4 1 4cocs

=w k cc +2 c cc2] 6W
cw 4 14 o 4Co s

+ ww kl4 i Cs - 1 kl4s k4Co CslIi

+ -W3l k 2 1 k l 4 c cocs o21 1

+w" k c + k C c 2

14 1 1 o 4 s s
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TABLE B-1

SPECIALIZATION TO SIX CASES OF INTEREST

(i' o' Es) = f(E1' 2 )

1 1

1 1W 1

f2 p

W. =W 1 0 0 0

0 2

Wo= W 1 --- -

W W = W 0 0 1 4E.W 1 1
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Angular Vibration about the Output Axis

(Wo = W, co =1)

8B ksW Ik 11 2  1 W 6W

6S1  k5  k6W -k4W 0 C

8C1  wk2  wk3W - wklW k2 W s

6S2  = 0 wk3 2  0 0 8w

kW 2 11

68S3  0 0 0 0

S8C3 0 0 (B-8a)

Angular Vibration about the Spin Axis

(Ws = W, cs =1)

6B -kW 1 kllW2 kl0w 2  0 8W

8S 1  k6  k5W k W- k 12W3 i

C1 k3  (k2W+ k14 W 3 ) wklW k o

W
2

S2  0 - Wkl3 2 0 0 8w

6C2 +k7W 1 2 10

1 3 "
6S3 0 0 k1 2 W3  0

8C 0 1 w 3 0 0 (B-8b)

*Dominant Term.
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Angular Vibration about the Input Axis

(Wi = W, ci = 1)

1 2 1 2
6B + kW - k1 0

w  k9W 0 6

s +Rk W2  -kW 5 0 c

6S 1  k4  12 - k6W k5W

1 _3
6C wk 1  -k 3W (k2W+ k1 4W ) k1 W s

8S2  = 0 0 0 0 6w

C2  - kW 2 k W2 0

8S -1 k 2  0 0 0
3  4 12

6c3  0 0 0 (B-8c)

Angular Vibration about Output and Spin Axes

(Wo = W = W/ , co =  1/)

8B (k8 - k 7 +k1 1 ) (- k7 k 8 ) 2T - ) 1

1 (k +k6 ) (k 5 +k 6 ) k4 - k2W3 0

W1 kl4(k 3 - k8

6S k wk 0 0 k8S k13 2 13 4 8

2 -J

6C2  (-k 8 +k 7 -kll - + (k 7 +k 8 ) - k 0

6s 0 0 1 k W3  0
S3 0 0 12

3  3k W2  wk W 3  1 k (B-8d)

3  W0 14 r Wak14f2 14 B

*Dominant Term.
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Angular Vibration about Input and Output Axes

(Wi = Wo = W/J, ci = co = 1/JF)

B w W2  1 + W2
6B (+k +k8 - kg (-k +k8) el(k11+kl0) 0 8W

81 (k+k5) '9k W2  (-k4 +k5) W 12 k 0

21 1k w (-k+k 2  kl 4  wk3W (kl+k2

1 W2

2  2 w132/2-
6S 2  = 0 0 2 3 0

SC2 (-k -k8+k9 ) 2 (-k +k8) W2 "(k +k* 0 ) W 2 0

.. 3 W 2  3 W 3  -

Skl 2 kl2 00

3 k14 5 kl4 1E4k4 43 fkl4A2

Angular Vibration about Input and Spin Axes

(Wi w=s = W/J, ci = e = 1/I-)

Sk10W +k 7W 2  (k11- k)W2 0 6

8Sj (k4 +k 6 )- (k4 ) 0 0
-) 2 -8 12  2- 6 0

6C 1  1 +k 3 ) w(k - k 3 ) 0 (kl+k3 )-

1 W2
6S =0 0 -wkl3/ 0 8w

62 - k 10W -kW 2  1 0

1 3
6S 3  0 0 -kl 2W 0

6C 3  0 0 w1 k1 4 W3  0 (B-8f)

*Dominant Term.
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APPENDIX C

KALMAN FILTERING FORMULATION

For the single-axis vibration tests described in Chapter 3, the

first data processing stage (see phase Ia in Fig. 3. 1-3) is one which ac-

. :cepts as input the scalar, periodically time-varying gyro output and pro-

duces as output the set of Fourier coefficients defining the applied torque

-function. This appendix formulates this data processing function as a

,problem in linear estimation for which the Kalman filter is an optimal

,,solution. The filter equations, which could be used for processing actual

test data, are presented. A hypothetical situation in which there is no

process noise is used to demonstrate the trade-off between test accuracy

and test duration, and to show a connection between this type of processing

and classical Fourier analysis. Finally, the full problem, with both

measurement noise and process noise is treated and some approximate

equations, which are useful in predicting the achievable test accuracy and

required test duration, are developed.
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C. 1 FILTER EQUATIONS

In this section the estimation problem is formulated in mathe-

matical terms and the optimal solution is stated in the form of a set of

differential equations, the Kalman filter equations, which can be mechanized

to process data. No proof is given here for the optimality of this solution

since it is well documented. (See, for example, Ref. 8.)

The problem formulation requires three things: a linear meas-

turement equation, a linear state differential equation and a description of

the statistics of the random variables defined in these two equations. A

scalar time-varying signal (torquer current) is measured which, except for

-errors in the measurement process, is proportional to the output of the

.torqub generator. Therefore, the measurement equation is (See App. A.):

z = M + error
o

= B +S l sinwt +C 1 cosWt

noise + S2 sin2 wt + C2 cos 2 wt

o t- + S3 sin3 wt + C3 cos3 wt

+ error (C.1-1)

h~iich can be rewritten:
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z = Xlh 1 + x2 h2 (t) + x 3 h3 (t)

+ x4 h4 (t) + x 5 h 5 (t)

+ x 6h 6 (t) + x7 h 7 (t)

+ v (t)

= Hx + v (C. 1-2)

The components of the state vector x are the 7 Fourier coefficients. The

elements of the measurement matrix H (in this case a row vector) are the

set of time-varying functions (1, sin wt, cos W t, sin 2 wt, ... ). We assume

the measurement noise v to be Gaussian white noise with zero mean and

-rvariance r6 (t - r), where 6 is the Dirac delta function:

v(t) = 0; v(t)v() = r8(t - 7) (C. 1-3)

Before discussing the state differential equation and process

noise we distinguish between the following two test situations. In case a

the only data produced by the test is that representing the time history

of the gyro torquer output, and it is natural to define measurement noise

as-above. No measurements of test table angle are generated, and it is

Slsobnatural to regard fluctuations in the applied test motions as one source

of process noise. In case b both gyro rebalance torque and test table angle

measurements are generated. In formulating the estimation problem

below, however, we continue to treat gyro torque measurement errors as

the only source of measurement noise and we regard table angle encoder

errors as a source of process noise. This point of view avoids more

complex calculations which would arise if we expanded the measurement

equation to include table angle measurements.
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Case a

The state equation is the seven-dimensional vector differential

equation expressing the rates of change of the seven Fourier coefficients.

The state equation is:

-u (C. 1-4)

where the process noise vector u is also assumed to be Gaussian white

noise with:

u(t) = 0; u(t)u(r) =Q6(t -r) (C.1-5)

There are two ways in which process noise can occur. Consider the fol-

lowing specific example of a single-axis angular vibration test. The test

motion axis is midway between the gyro output and spin axes; the applied

angular rate is given by:

W =W W sin t (C. 1-6)
o sT,

Based on the expressions given in Table 3. 1-1" we can write for the

measurement equation:

'- 1"'86
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+ 5[ (k+k 6 )] sin wt

+ k2 +3 - k4] cos Wt

+ k3] sin 2 o t

+ -2 (k8-k +k11 cos2 wt

+ [O]sin3 ot

+[8W3 k1  cos 3 wt

+ v (t) (C. 1-7)

The terms in the brackets are the seven state variables in this example.

They can vary either because the basic parameter groups (the k's) vary1

during the test or because the test motion amplitude and frequency (Wand w)

Yary during the test. If test motion variations are the major cause of

process noise, the various components of the noise vector will be highly

correlated since W appears in all six non-zero state variable definitions

and w appears in three of them. That is, the off-diagonal elements of the

Q matrix will be non-zero and significant. If, on the other hand, gyro

parameter changes are the major cause of process noise, we would expect
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very little correlation between process noise components; the only exception

being a strong correlation between the first and fifth components because

both depend on parameter groups k 7 , k8 and k11.

Since both the state equation and the measurement equation are

linear (with time-varying coefficients in the latter), and since the process

and measurement noises are assumed to be Gaussian, the Kalman filter is

the optimal way (minimum variance estimation error) to process the meas-

urement data. The applicable form of these equations may be written:

= K[z -Hx ] (C. 1-8)

K = 1PHT (C.1-9)
r

1 T
P= Q -PHTHP (C.1-10)

r

where x is the optimal estimate of the state vector x, K'is the Kalman

filter gain matrix (7 x 1) and P is the covariance matrix of the estimation

error:

SP = ( - x) ( - x)T  (C. 1-11)

Thie integration of Eq. (C. 1-10) yields curves like that illustrated in Fig. 3. 3-3.
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Case b

We now consider the situation in which table angle measurements

are generated. In the following formulation Eq. (C. 1-10) still applies, but

with a modified interpretation for the process noise matrix Q. Consider the

third state variable in the above example:

W= (k2 + k3  k 4) (C. 1-12)
x3 3 _k24 4 

Differentiating:

x3 = u3 = I2 k 4

+ +k k4

2 3

+ (k + k k (C. 1-13)
-J- 2 3 44

We will consider the test motion changes, W and w, as control functions

which change the values of the state variables (Fourier coefficients). The

indicated values of these control functions, which are derived from test

table measurements, enter into the filter equations as a control vector.

Following the development in Ref. 7, Section 2. 2, "State Estimation

-Without Measurements," we can write for the state equation:

. = u = Fx + Gu k + Lp (C. 1-14)

[See Eq. (2. 2-6) in Ref. 7.]

where, in this case:
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F=0

u represents random "system disturbances, " or changes
in the values of the parameter groups (11' ... k14).

p represents the "control function, " or test motion changes

(W, l).

G is a 7 x 14 matrix whose elements are terms like wW/-2-

L is a 7 x 2 matrix whose elements are terms like

Following Eq. (2.2-8) in Ref. 7, we can write:

0 0

= +P /T+ GQkGT + LSLT (C. 1-15)

where:

uk(t) =k(t- r) (C. 1-16)

and:

S[- (t)-ind(t)] [(t)-ind(T)] = S (t-r) (C. 1-17)

We define the effective, overall process noise matrix as:

Q = QkGT + LSLT (C. 1-18)

where GQkGT represents the contribution of random changes in the gyro

parameters and L S LT represents the contribution of "errors in the applied

control, " i.e., errors in the indicated test motion. We have adopted

the following point of view. The indicated history of test motion, de-

rived from the table angle measurements, is regarded as the "desired"

control function. The difference between the actual and indicated motion
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changes can then be regarded as the error in the applied control. This

error is effectively a process noise in this formulation.

Together with the modified interpretation of the process noise

matrix Q, Eq. (C. 1-10) must be modified to account for the effect of the

indicated, or "desired," control:

x K [z - Hc] + L ind  (C. 1-19)

C.2 TEST TIME VS ACCURACY

For the hypothetical situation in which there is no process noise

(Q = 0) Eq. (C. 1-10) reduces to:

Po:iH1T HP (C.2-1)
. r

Since the derivative of the inverse matrix can be written:

P- 1  P -1P P-1 (C.2-2)

we can write:

.-1 1 -1 T -1I =p-P PH HPP-
r

1T
- H H (C. 2-3)
r

Based on the definition of H we have:
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I sin wt cos t sin2,t cos 2,t sinS3wt cos 3wt

sin2'.t sinwtcoswt sinct si 2t sinwtcos 2t sint sn3c-t sinwt cos 3wt

os2t cost sin 2et c os 2w coswtsin3wt coswt cos3wA

HTH= sin 22wt sin2wtcos2wt sin2.tLsin 3.t sin2:.tcos2wt

cos2 2,t cos2At sin3t cos 2 ,t cos 3wt

symmetric

sin23wt sin3-tcos3.t

cos
2

3 t

(C. 2-4)

Notice that the off-diagonal elements are products of two time functions which

are orthogonal over one test motion period, T = 2Tn/ (the integral of the

product is zero). The integral of the matrix H H over exactly one period

is, therefore, the diagonal matrix:

1
t=(n+l)T 1 0

H H dt = T 1 (C. 2-5)2 1
t nT 2 1

Therefore, the change in the inverse covariance matrix over one cycle of

the test motion is:

i Reproduced from i
best available copy. 192
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11

AP-1 _ 1 (C.2-6)

0 21

and-

P (nT) p-l(0 ) + nT 1 (C.2-7)r

O 21

where n is the number of cycles since the start of the test. After sufficient

time has elapsed the second term of Eq. (C. 2-7) dominates the first term,

P (0), allowing us to write the approxiinate expression:

1 1

-1 t 1
P- W r (C. 2-8)
t -4 large 2 1

The covariance matrix then becomes (taking the inverse of the inverse):
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2 O
2

2

P (t) r 2 (C. 2-9)
t- large ) 2

L 2

Thus, for the no-process-noise case, the simultaneous estimation of the

seven state variables, x 1 through x7, separates into seven scalar problems

for which the rms estimation errors are:

1 = 1 =1- (C.2-10)

and

i P. (i = 2,3,...7) (C.2-11)

Equation (C. 2-11) illustrates the trade-off between test time and test accuracy

as a function of the measurement noise.
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C. 3 CONNECTION WITH FOURIER ANALYSIS

The analysis of the preceding section can be extended slightly to

demonstrate an interesting connection between optimal filtering and Fourier

analysis techniques.

The combination of Eqs. (C. 1-9) and (C. 2-9) yields the following ap-

proximate expression for the filter gain matrix:

1

2 sin wt

2 cos wt
1(C. 3-1)

K = 1PH 2 sin2 t (C.3-1)
t -large 2 cos 2 wt

2 sin 3 w t

2 cos 3 wt

Substituting Eq. (C. 3-1) into Eq. (C. 1-8) yields:

- 1 1 -[1 sin wt coswt ... ]

2 sin wt 2 sin wt

x 2coswt z - 2coswt x

2sin2 wt 2sin3 wt

(C. 3-2)
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Integrating Eq. (C. 3-2) over one cycle, and treating - and x as constant over

this time yields:

n n+ 1)T .(n + 1)T

+1n = n  dt 1 sin zdt - IxT
+1 cos

nT nT

(C.3-3)

In Fourier analysis the coefficients are determined by:

T

SB =  z dt (C. 3-4)

O

T

S=f z sin(nwt) dt (C.3-5)

0

T

C =2 fz cos (n wt) dt (C. 3-6)

0

See, for example Ref. 9. Also te nT. Therefore:

A + 1 based on (n+ 1)st cycle - X

of data.

and:

Sn+1 n -n+1 (C. 3-8)
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Thus, after sufficient time has elapsed, the optimal filtering equation be-

comes approximately Eq. (C. 3-8), in which the state vector estimate xn

based on n cycles of data is adjusted by a weighted (1/n) difference between

the Fourier estimate based on the n + 1st cycle of data and the previous

estimate.

C.4 STEADY STATE SOLUTIONS WITH PROCESS NOISE

We now consider the effects of process noise, represented by the

matrix Q in Eq. (C.1-10). The elements of the Q matrix along with the meas-

urement noise r determine the final value of the elements of the P matrix

as well as the settling time, t s . Note that the rms estimation error of the

ith state variable is the square root of the ith diagonal element of the co-

variance matrix:

oi = .
(C.4-1)

Equation (C. 1-10) represents n (n 1)/2 simultaneous first-order

ordinary differential equations which are nonlinear (since P appears twice

in one term) and which contain time varying coefficients (the elements of

H). The elements of P cannot reach constant values (with P = 0) since the

elements of H change continuously. They can, however, reach a steady-

state solution in the form of an oscillation about average values.

The most evident way of investigating these steady-state solutions

is to numerically integrate Eq. (C. 1-10) via computer, starting from various

initial values. Some examples of such integrations for one- and two-

dimensional versions of the problem are illustrated in Figs. C-i and C-2 and

discussed below. We can achieve an analytic indication of the final average

values by making some simplifying assumptions as follows.
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100 r = 100

q = 10

80 
r = 10

q = 100

60 -

20 (7 =1 Hz

I ®

I I

1 2 3 4 5 6

t (sec)

Figure C-1 Numerical Integration Results

Consider, first a one-dimensional version of Eq. (C. 1-10) where

we are trying to estimate a single variable, the magnitude of a sinusoidal

oscillation:

S(t) =q - h2(t)p2(t (.4-2)

where

h (t) = sin wt (C.4-3)

The scalar p is the variance of the estimation error and the scalar q charac-

terizes the process noise. We set h2 equal to its average value (1/2) and let

= 0 to obtain the steady-state equation:

0 q 1 2 (C.4-4)
2rPss
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10 r =  10

q11 
= 100

q22 
=  0.1

8

2 2ss from Eq.(C.44-18 C 12

0.617 0.9
6

76 14 = 1Hz

-2

Exact

1- c = .Solutions
S12=0.

0 10 20 30
t (sec)

Figure C-2 Improvement in Small Term Estimate Due to Correlation

Therefore:

pe Pss ~2 (C.4-5)

The validity of this solution is demonstrated in Fig. C-1 where integrations

of the exact equation, Eq. (C. 4-2), are plotted for four combinations of r, q

-:and p (0). Note that while the steady-state value is apparently the same in

all cases, it is approached much faster with the smaller measurement noise,

r. Also note that the true steady-state solution is more oscillatory with

the higher ratio of q/r. (Oscillations are also present in cases and 0
but are too small to be seen in the figure.)
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Consider next the two-dimensional problem in which a large

variable (Fourier coefficient), x 1 , is multiplying sin w t and a small variable,

x2 is multiplying sin 2 wt. We refer to xl as the "dominant term" and x 2 as

the "nondominant term. " In the following development the process noise

q11 associated with x 1 is assumed to be much larger than the process noise

q22 associated with x 2 . [This would be true whenever test motion amplitude

variations are the major cause of process noise; see Eq. (C. 1-7).] The

off-diagonal element q1 2 of the process noise matrix can take values between

zero (no correlation between process noise components) and + q ll22

(jerfect correlation). Equation (C. 1-10) now becomes:

P1l b12 q11 q12

P12 P 2 2  q12 q22

P11 P 1 2  sin w t sinwt sin2wt pll 1 2

r: 2
P12 22 sinwt sin2wt sin 2t P 1 2  P 2 2

(C.4-6)

Wellet the time varying elements of HTH take their average values:

sin t sin2 2wt 2 (C.4-7)

and

sinwt sin2wt = 0 (C.4-8)
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We also assume:

Pl ss P22ss  
(C.4-9)

ss ss

which is borne out by the results below if q1 1 
> q2 2 . Therefore:

Pl 1  +P 2 2  11 s s  (C. 4-10)

with the assumptions of Eqs. (C.4-7), (C.4-8) and (C.4-10), Eq. (C.4-6)

becomes equivalent to the three scalar equations:

1 2
1 1 = 1 1  r P11

1
12= 1 2 - 2 1 PlP412

1 2 2
P2 2  2 2r P12 2 2

Setting the three left-hand-sides equal to zero yields the steady-state

solution:

p11 ss = 2 rq 1 1  
(C.4-12)

= 2r (C.4-13)

P12ss q12 q11

2

2 _r q 2 (C. 4-14)
P22 - 2r 22  ql0-
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Equation (C. 4-12), giving the steady-state variance of the dominant term, is

the same as Eq. (C.4-5) for the one-dimensional case. Equation (C.4-16)

giving the steady-state variance of the small term, reduces to Eq. (C.4-5)

when the cross-correlation term, q 1 2, is zero. Thus, we can write:

Pii = f2 rqii i (C.4-15)

where Ai accounts for an improvement due to correlation between the

various components of process noise. A conservative formula for the

final value of the estimation error for the ith state variable is, therefore:

The :i2 (C.4-16)Ii V 2rqii

The settling time (defined in Section 3. 3 and illustrated in Fig. 3. 3-3) associated

with this level of accuracy may be found by setting Eq. (C. 2-11) equal to

Eq. (C. 4-16) and solving for t, yielding

ts 
(C.4-17)

Equations (C.4-16) and (C.4-17) are plotted parametrically in Fig. 3.2-5.
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An alternate form of Eq. (C. 4-14):is:

2 2 rq 2 2 (1 - c2 ) (C.4-18)

ss

where c 1 2 is a measure of the correlation between the two components of

process noise:

c A q 1 2  (C.4-19)
12 --

q11 q22

The corresponding expression for a useful test time is:

t 2r 1- (C. 4-20)

2 c 1 2

The validity of Eq. (C.4-18) is demonstrated in Fig. C-2 where integrations

of the exact Eq. (C. 4-6) are plotted for two values of the correlation

measure (zero and 0.9).

In summary, through the use of simplifying assumptions we

have developed a set of formulas which provide useful indications of the

final steady-state estimation accuracies, Eqs. (C.4-16) and (C.4-18), and

the corresponding settling times, Eqs. (C.4-2) and (C.4-6), for one- and

two-dimensional versions of the estimation problem. Comparison of

Eqs. (C. 4-18) and (C. 4-20) with Eqs. (C.4-16) and (C. 4-17), respectively,
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shows that a strong correlation between process noise components reduces

the final estimation error of the nondominant term but increases the time

needed to reach the more accurate level. The validity of the above formulas

has not been checked for the n-variable case where n > 2. It is felt, how-

ever, that the formulas will remain valid since the two-dimensional case

contains the essential ingredients of the problem.
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APPENDIX D

FOURIER ANALYSIS EQUATIONS FOR

PULSE REBALANCED TESTING

This appendix derives two sets of exact equations which produce

the Fourier coefficients of the torque generator output produced during vi-

bration testing of a pulse rebalanced sensor. The first set corresponds to

the binary or ternary pulse-torquing scheme; the second set corresponds

to the time modulation scheme. The torque produced by the rebalance

loop opposes the total "applied" torque, which is the sum of the desired

gyroscopic or pendulous torque and all disturbance torques. Since the

applied test motion is periodic and the residual (non-motion-induced)

torque is assumed to be constant over the time of the test, the total applied

torque is assumed to be a periodic function of time.

D. 1 BINARY AND TERNARY PULSE-TORQUING

Figure D-1 pictures typical waveforms of the applied torque,

Ma, and the torque generator output, Mtg , as well as their integrals, for

the binary pulse rebalanced case. The two integral functions are forced,

by the action of the closed loop, to have the same low-frequency harmonic

content (both consist of the ramp, Bt, plus a periodic function). The two

torque functions, Ma and Mtg, must also have the same low-frequency

description, even though they appear quite different in form. The de-

rivative of the torque generator output, Mtg consists of a sequence of

205



THE ANALYTIC SCIENCES CORPORATION

R -1230

Mo. Mtg B+Slsinwt +C1coswt+...

M-Mtg

M I M a

Time

(a) Torque Waveform

S 1  C1

f Mtgdt fModt -Bt + '(-coswt)+ - sinwt

fMdt

Time

(b) Integral of Torque

MIt M to : C1coswt + S1sin wt +, ,

I ITime :WSlcos t- wC 1sin wt+...

(c) Derivative of Torque

Figure D-1 Binary Pulse Rebalancing Waveforms
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impulse functions, as shown at the bottom of the figure. It must also be a

periodic function since it is the derivative of a periodic function. Its trigo-

nometric coefficients (Sl, C1, etc.) are related to the torque function co-

efficients as shown. That is,

Sn = - wnCn (D. 1-1)

n = nSn (D. 1-2)

We can conveniently apply classical Fourier analysis to the

derivative function. Thus, looking at one test motion cycle, lasting time,

T = 2 f/w, we can write:

S = f ((t) sin n t dt = (t)sinnwt dt (D. 1-3)Sn T J

o 0

SCn= - 2 1 M(t)cos nwt dt T (t) sin nwt dt (D. 1-4)

o o

A single square pulse, starting at time ti , lasting one pulse

width, h, and of magnitude Mi has the form sketched below.
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t. = hi
M.

Mtg

t. t. +h
1 1

SM i 8 (t -ti)
ltg 

I

-M. 6(t-t. - h)
1 1

The derivative function consists of equal magnitude positive and negative

impulse functions spaced h seconds apart. The contribution of these two

impulses to the integral of Eq. (D. 1-3) is:

n = = [sinnwt. - sinnw(ti+h)
n. i

= -[sinnwhi - sinnwh (i+1)] (D..1-5)

Note that M. can take on either of two levels for binary torquing and any
1

of three levels for ternary torquing, according to:

M for a positive pulse

M. = 0 for zero torque

-M for a negative pulse
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Adding up contributions like that of Eq. (D. 1-5) over one full

cycle of k pulse widths, where k = T/h, we obtain:

k-i

n =W M. [sinnwhi - sinnwh (i + 1)] (D. 1-6)

i=0

Now, using the identity:

sin(a + 8) = sina cos B + cos a sin g (D. 1-7)

we obtain:

k-1

Sn = M [(1 - cosnwh)sinnwhi - sinnwh cosnwhi]

i=0
(D. 1-8)

Averaging over m full cycles, or km pulse widths, we obtain:

mk- 1

SIw M. [(1 cos nwh)sin nwhi - sin nh cos nwhi
n m 1T

i=0
(D. 1-9)
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Similarly:

- 1 T
cn 1 f M (t) cos nwt dt

km - 1
1 n MI cos.nhi - cosnwh (i+1)

i=0

km - 1

SMi [(1 - cos nwhII) cos nwhi + sin nwh sin nwhi

i=0
(D. 1-10)

where we have used the identity:

2 cos (a + ) cosos a cos - sina sin B (D. 1-11)

Substituting Eqs. (D. 1-9) and (D. 1-10) into Eqs. (D. 1-1) and

(D. 1-2) we obtain, finally:

km - 1

S I E M. (1 - cos nwh) cos nwhi + sin nwh sin nwhin mnff
i=0

(D. 1-12)

km -1

_ 1 E M.1 [(- cosnwh) sinnwhi - sinnwh cosnwhi
i= 0

(D. 1-13)
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Equations (D. 1-12) and (D. 1-13) are exact expressions for the

Fourier coefficients defining the periodic function, Mtg(t). These ex-

pressions are summations, rather than integrals, because we have chosen

;to work with the derivative signal, 1 tg(t), which is a sequence of Dirac

delta functions. The "input" data consist of the sequence of binary or

ternary numbers, Mi, which represent the time history of the sensor re-

balance pulses.

D. 2 TIME MODULATION TORQUING

Adr.= In the time modulation scheme (Ref. 2) the torque level switches

kbetween +M and -M, just as in the binary scheme, but the pulse widths

are varied, as shown in the sketch below.

M tg

-M

Mtg 1Itg M 8t -hd M (t i h)

2 M 6(t- hi- 1i)
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Each time interval of width h is divided between a positive pulse and a

following negative pulse. The switch from positive to negative takes place
th

at one of a number of discrete points in the interval. In the i increment

[between t = ih and t = (i + 1)h] the switching time is t = ih + Ii. The net

torque is positive if ai > h/2.

The contribution of the combined positive and negative pulses

during the it h interval to the integral of Eq. (D. 1-3) is:

AS - M sinnwhi - 2 sin(nwhi + nwAi ) + sin (nwhi + nwh)

(D. 2-1)

Adding up contributions like that of Eq. (D. 2-1) over m full cycles, or

km intervals of width h, we obtain:

mk- i

S- 1 oM [sinnhi - 2sin(nwhi +nwe) + sin(nwhi +nwh)l
n m[

i=O
(D.2-2)

Using the identity given as Eq. (D. 1-7) and the fact that, over an integral

number of cycles, m:

mk- i

Ssinnwhi 0 (D.2-3)

i=O

we obtain:

mk -

F: _nm M1 wM -2sinnwhicosn¢ i - 2 c o s n wh i s i n n et i

i=O

+ sinnwhi cosnwh + cosnwhi sinnwh

(D. 2-4)
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Similarly,

km - 1

C M cosnwhi - 2 cos(nwhi +nwL.)n m w 1
i=0 1

+ cos(nw hi + nwh

km - 1
S M [2 [-cosnwhi cosnwe. + 2 sinnwhi sinnwei

m 1

i=O
+ cosnwh. cosnwh - sinnwhi sinnwh

(D. 2-5)

where we have used the identity given as Eq. (D. 1-11).

Substituting Eqs. (D. 2-4) and (D. 2-5) into Eqs. (D. 1-1) and

(D..1-2) we obtain, finally:

km -1

Sn mn M -(2 cosnw - cos nwh) cos nwhi

i=O
+ (2sinnwt. - sinnwh) sinnwhi (D.2-6)

km - 1

C_ M [(2 cosnwLi- cosnwh) sinnwhi
n mn[ i

i=O ]
e + (2sinnwt i - sinnwh) cosnwhi (D. 2-7)

Equations (D. 2-6) and (D. 2-7) are exact expressions for the

Fourier coefficients defining the periodic rebalance torque when time

modulation torquing is used. The input data in this case is the sequence

of values, ii, which represent the widths of successive positive pulses.
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APPENDIX E

SURVEY OF STRAPDOWN SENSOR TEST METHODS, 1968

At the commencement of the study reported in this document a

survey of contemporary strapdown sensor testing and test equipment was

performed. The survey was limited to procedures for determining motion-

-induced errors in inertial instruments with emphasis on those produced by

the angular vibration environment peculiar to strapdown inertial systems.

Six facilities - The M. I. T. Instrumentation Laboratory, Cambridge,

.Massachusetts; TRW Systems, Redondo Beach, California; The Central

Inertial Guidance Test Facility, Holloman AFB, New Mexico; The Naval

VWeapons Center, China Lake, California; Hamilton Standard Systems

.;Center, Farmington, Connecticut; and Honeywell, Inc., Minneapolis,

.,Minnesota - were visited. In addition, Army Missile Command, Hunts-

_ville, Alabama and Honeywell, Inc., St. Petersburg, Florida were con-

otacted but visits were not made because no dynamic strapdown test work

.,was being conducted at either of these facilities.

During each visit information was obtained concerning the test

equipment available, the error models and data processing employed and

tests performed at that particular facility. Attention was also given to

the manner in which the actual motion experienced by the test items was

,.determined. No attempt is made here to list the detailed capabilities of

each laboratory. Rather, a set of general observations and highlights of

the combined test capability of the installations visited are provided.
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Angular Vibration Test Equipment - Machinery for subjecting

instruments to angular vibrations was available at each of the facilities

visited. However, there was a wide variation in the capabilities of dif-

- ferent laboratories. The Central Inertial Guidance Test Facility (CIGTF)

-and the Instrumentation Laboratory were the only two installations capable

-of providing accurate out-of-phase angular vibrations about a pair of

essentially orthogonal axes. The machinery used in both laboratories is

essentially identical. The two-axis vibrators are limited to frequencies

below about 100 Hz and neither appears capable of testing entire sensor

_,packages of contemporary size and weight.

Both CIGTF and the Hamilton Standard Systems Center (HSSC)

had single axis angular vibration machinery capable of applying sinusoidal

angular oscillations up to about 1000 Hz to individual sensors. Again,

essentially the same device - a torsion table driven by a linear shaker -

was found in both locations. The CIGTF, which had been using this device

for high frequency testing claimed to have observed bad resonances in the

:table structure at frequencies above 600 Hz. HSSC had made use of this

c-equipment to study sensor dynamic errors under random angular vibration

a conditions. TRW Systems' test laboratory has a large angular vibration

tLmachine capable of producing single axis oscillations at frequencies up to

2000 Hz with a 500 lb test specimen. However, this device is not capable

of the precision inherent in most inertial test machinery.

o:- Most facilities surveyed contained single axis rate tables which

could be driven by oscillatory signals to provide a single axis angular

vibration testing capability in the frequency range of 100 Hz or less.
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Linear Vibration Test Equipment - The best linear vibration

capabilities belonged to Honeywell and M.I.T. Both have precision slip

tables capable of oscillations in the frequency range of up to 3000 Hz with

maximum force of 8,000 - 10,000 lb and displacements up to 1 inch double

amplitude. No capability for providing out-of-phase linear vibration along

two axes existed in any of the facilities visited.

Test Data Processing - HSSC has a capability for recording the

output of a sensor undergoing dynamic testing. About 100 sec of data

could be taken this way. In view of the emphasis on recovering harmonic

signals during vibration testing which exists in this report, no facility

had a satisfactory ability to recover all error parameters from single-axis

angular vibration tests.

Both CIGTF and HSSC had a capability for performing spectral

density analyses on the applied test motions. In the case of the former

facility this was used in conjunction with sinusoidal motion tests on the

two-axis angular vibrator while Hamilton Standard performed density

analyses to confirm the distribution of random angular rates applied by

the single-axis rotary table.

With the exception noted above, all closed loop sensor tests are

performed by feeding the instrument output into an up-down counter and

only the net pulse count for the duration of the test is available.
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Summary - None of the installations visited had either a two-

axis vibrator capable of oscillations in the frequency range up to 500 Hz

or a capability of recording sensor loop outputs directly while conducting

single-axis vibration tests. For this reason, the testing of strapdown

sensors for dynamic errors, including those introduced by the rebalance

electronics, appears to be in a state of flux. Consequently, the conclusions

and recommendations of the study described in part by this document will

have a particular impact on the makeup of future inertial sensor test

laboratories.
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